The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An upper bound of the basis number of the strong product of graphs”

The basis number of some special non-planar graphs

Salar Y. Alsardary, Ali A. Ali (2003)

Czechoslovak Mathematical Journal

Similarity:

The basis number of a graph G was defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. He proved that for m , n 5 , the basis number b ( K m , n ) of the complete bipartite graph K m , n is equal to 4 except for K 6 , 10 , K 5 , n and K 6 , n with n = 5 , 6 , 7 , 8 . We determine the basis number of some particular non-planar graphs such as K 5 , n and K 6 , n , n = 5 , 6 , 7 , 8 , and r -cages for r = 5 , 6 , 7 , 8 , and the Robertson graph.

The cycle-complete graph Ramsey number r(C₅,K₇)

Ingo Schiermeyer (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.

The maximum genus, matchings and the cycle space of a graph

Hung-Lin Fu, Martin Škoviera, Ming-Chun Tsai (1998)

Czechoslovak Mathematical Journal

Similarity:

In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .