Displaying similar documents to “Remarks on the existence of uniquely partitionable planar graphs”

A characterization of planar median graphs

Iztok Peterin (2006)

Discussiones Mathematicae Graph Theory

Similarity:

Median graphs have many interesting properties. One of them is-in connection with triangle free graphs-the recognition complexity. In general the complexity is not very fast, but if we restrict to the planar case the recognition complexity becomes linear. Despite this fact, there is no characterization of planar median graphs in the literature. Here an additional condition is introduced for the convex expansion procedure that characterizes planar median graphs.

Some globally determined classes of graphs

Ivica Bošnjak, Rozália Madarász (2018)

Czechoslovak Mathematical Journal

Similarity:

For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.

Supermagic Generalized Double Graphs 1

Jaroslav Ivančo (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.

Dominant-matching graphs

Igor' E. Zverovich, Olga I. Zverovich (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We introduce a new hereditary class of graphs, the dominant-matching graphs, and we characterize it in terms of forbidden induced subgraphs.

γ-labelings of complete bipartite graphs

Grady D. Bullington, Linda L. Eroh, Steven J. Winters (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Explicit formulae for the γ-min and γ-max labeling values of complete bipartite graphs are given, along with γ-labelings which achieve these extremes. A recursive formula for the γ-min labeling value of any complete multipartite is also presented.