Displaying similar documents to “A note on domination in bipartite graphs”

On Generalized Sierpiński Graphs

Juan Alberto Rodríguez-Velázquez, Erick David Rodríguez-Bazan, Alejandro Estrada-Moreno (2017)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we obtain closed formulae for several parameters of generalized Sierpiński graphs S(G, t) in terms of parameters of the base graph G. In particular, we focus on the chromatic, vertex cover, clique and domination numbers.

γ-graphs of graphs

Gerd H. Fricke, Sandra M. Hedetniemi, Stephen T. Hedetniemi, Kevin R. Hutson (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in V -S is adjacent to at least one vertex in S. The domination number γ(G) of G equals the minimum cardinality of a dominating set S in G; we say that such a set S is a γ-set. In this paper we consider the family of all γ-sets in a graph G and we define the γ-graph G(γ) = (V(γ), E(γ)) of G to be the graph whose vertices V(γ) correspond 1-to-1 with the γ-sets of G, and two γ-sets, say D₁ and D₂, are adjacent in E(γ)...

Generalized domination, independence and irredudance in graphs

Mieczysław Borowiecki, Danuta Michalak, Elżbieta Sidorowicz (1997)

Discussiones Mathematicae Graph Theory

Similarity:

The purpose of this paper is to present some basic properties of 𝓟-dominating, 𝓟-independent, and 𝓟-irredundant sets in graphs which generalize well-known properties of dominating, independent and irredundant sets, respectively.

Paired-domination

S. Fitzpatrick, B. Hartnell (1998)

Discussiones Mathematicae Graph Theory

Similarity:

We are interested in dominating sets (of vertices) with the additional property that the vertices in the dominating set can be paired or matched via existing edges in the graph. This could model the situation of guards or police where each has a partner or backup. This paper will focus on those graphs in which the number of matched pairs of a minimum dominating set of this type equals the size of some maximal matching in the graph. In particular, we characterize the leafless graphs of...

A Note on the Locating-Total Domination in Graphs

Mirka Miller, R. Sundara Rajan, R. Jayagopal, Indra Rajasingh, Paul Manuel (2017)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we obtain a sharp (improved) lower bound on the locating-total domination number of a graph, and show that the decision problem for the locating-total domination is NP-complete.

On the p-domination number of cactus graphs

Mostafa Blidia, Mustapha Chellali, Lutz Volkmann (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.

Magic and supermagic dense bipartite graphs

Jaroslav Ivanco (2007)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we prove that any balanced bipartite graph with minimum degree greater than |V(G)|/4 ≥ 2 is magic. A similar result is presented for supermagic regular bipartite graphs.

Dominating bipartite subgraphs in graphs

Gábor Bacsó, Danuta Michalak, Zsolt Tuza (2005)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is hereditarily dominated by a class 𝓓 of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to 𝓓. In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.

Eternal Domination: Criticality and Reachability

William F. Klostermeyer, Gary MacGillivray (2017)

Discussiones Mathematicae Graph Theory

Similarity:

We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in the sense that deleting any vertex reduces the eternal domination number. Examples of these graphs...

Note on enumeration of labeled split graphs

Vladislav Bína, Jiří Přibil (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper brings explicit formula for enumeration of vertex-labeled split graphs with given number of vertices. The authors derive this formula combinatorially using an auxiliary assertion concerning number of split graphs with given clique number. In conclusion authors discuss enumeration of vertex-labeled bipartite graphs, i.e., a graphical class defined in a similar manner to the class of split graphs.

Relating 2-Rainbow Domination To Roman Domination

José D. Alvarado, Simone Dantas, Dieter Rautenbach (2017)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G, let R(G) and yr2(G) denote the Roman domination number of G and the 2-rainbow domination number of G, respectively. It is known that yr2(G) ≤ R(G) ≤ 3/2yr2(G). Fujita and Furuya [Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812] present some kind of characterization of the graphs G for which R(G) − yr2(G) = k for some integer k. Unfortunately, their result does not lead to an algorithm that allows to recognize...

Radio Graceful Hamming Graphs

Amanda Niedzialomski (2016)

Discussiones Mathematicae Graph Theory

Similarity:

For k ∈ ℤ+ and G a simple, connected graph, a k-radio labeling f : V (G) → ℤ+ of G requires all pairs of distinct vertices u and v to satisfy |f(u) − f(v)| ≥ k + 1 − d(u, v). We consider k-radio labelings of G when k = diam(G). In this setting, f is injective; if f is also surjective onto {1, 2, . . . , |V (G)|}, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio...