Displaying similar documents to “Trees with equal restrained domination and total restrained domination numbers”

Trees with equal total domination and total restrained domination numbers

Xue-Gang Chen, Wai Chee Shiu, Hong-Yu Chen (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both ⟨S⟩ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and ⟨V(G)-S⟩ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination...

Vertices Contained In All Or In No Minimum Semitotal Dominating Set Of A Tree

Michael A. Henning, Alister J. Marcon (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, γ(G), and the total domination number, γt(G). A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, γt2(G), is the minimum cardinality of a semitotal dominating...

Trees with unique minimum total dominating sets

Teresa W. Haynes, Michael A. Henning (2002)

Discussiones Mathematicae Graph Theory

Similarity:

A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.

Trees with equal 2-domination and 2-independence numbers

Mustapha Chellali, Nacéra Meddah (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization...

Efficient (j,k)-domination

Robert R. Rubalcaba, Peter J. Slater (2007)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set S of a graph G is called efficient if |N[v]∩ S| = 1 for every vertex v ∈ V(G). That is, a dominating set S is efficient if and only if every vertex is dominated exactly once. In this paper, we investigate efficient multiple domination. There are several types of multiple domination defined in the literature: k-tuple domination, {k}-domination, and k-domination. We investigate efficient versions of the first two as well as a new type of multiple domination.

Vertices contained in all minimum paired-dominating sets of a tree

Xue-Gang Chen (2007)

Czechoslovak Mathematical Journal

Similarity:

A set S of vertices in a graph G is called a paired-dominating set if it dominates V and S contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.

A Note on Non-Dominating Set Partitions in Graphs

Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A set S of vertices of a graph G is a dominating set if every vertex not in S is adjacent to a vertex of S and is a total dominating set if every vertex of G is adjacent to a vertex of S. The cardinality of a minimum dominating (total dominating) set of G is called the domination (total domination) number. A set that does not dominate (totally dominate) G is called a non-dominating (non-total dominating) set of G. A partition of the vertices of G into non-dominating (non-total dominating)...

Domination Parameters of a Graph and its Complement

Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

Characterization of trees with equal 2-domination number and domination number plus two

Mustapha Chellali, Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.

Total Domination Multisubdivision Number of a Graph

Diana Avella-Alaminos, Magda Dettlaff, Magdalena Lemańska, Rita Zuazua (2015)

Discussiones Mathematicae Graph Theory

Similarity:

The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination...

Hereditary domination and independence parameters

Wayne Goddard, Teresa Haynes, Debra Knisley (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.

Graphs with equal domination and 2-distance domination numbers

Joanna Raczek (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. The distance between two vertices u and v in a connected graph G is the length of the shortest (u-v) path in G. A set D ⊆ V(G) is a dominating set if every vertex of G is at distance at most 1 from an element of D. The domination number of G is the minimum cardinality of a dominating set of G. A set D ⊆ V(G) is a 2-distance dominating set if every vertex of G is at distance at most 2 from an element of D. The 2-distance domination number of G is the minimum...

On Graphs with Disjoint Dominating and 2-Dominating Sets

Michael A. Henning, Douglas F. Rall (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices...

Optimal Locating-Total Dominating Sets in Strips of Height 3

Ville Junnila (2015)

Discussiones Mathematicae Graph Theory

Similarity:

A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, locating-total dominating sets in strips have been studied by Henning and Jafari Rad (2012)....

Domination in Analysis

Denny Gulick (1973)

Publications du Département de mathématiques (Lyon)

Similarity:

Various Bounds for Liar’s Domination Number

Abdollah Alimadadi, Doost Ali Mojdeh, Nader Jafari Rad (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if Uv∈S N[v] = V , where N[v] is the closed neighborhood of v. Let L ⊆ V be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in L ∩ N[v] can report that v is the location of the intruder, but (at most) one x ∈ L ∩ N[v] can report any w ∈ N[x] as the intruder location or x can indicate that there is no intruder in N[x]. A dominating set L is called a liar’s dominating set if every v ∈ V...

Two Short Proofs on Total Domination

Allan Bickle (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph Υt (G) is the minimum size of a total dominating set. We provide a short proof of the result that Υt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.