Displaying similar documents to “Equitable coloring of Kneser graphs”

Equitable Colorings Of Corona Multiproducts Of Graphs

Hanna Furmánczyk, Marek Kubale, Vahan V. Mkrtchyan (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by 𝜒=(G). It is known that the problem of computation of 𝜒=(G) is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts...

Edge colorings and total colorings of integer distance graphs

Arnfried Kemnitz, Massimiliano Marangio (2002)

Discussiones Mathematicae Graph Theory

Similarity:

An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.

On multiset colorings of graphs

Futaba Okamoto, Ebrahim Salehi, Ping Zhang (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset...

List coloring of complete multipartite graphs

Tomáš Vetrík (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.

Analogues of cliques for oriented coloring

William F. Klostermeyer, Gary MacGillivray (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of vertices in D are joined by a directed path of length at most two.

On 1-dependent ramsey numbers for graphs

E.J. Cockayne, C.M. Mynhardt (1999)

Discussiones Mathematicae Graph Theory

Similarity:

A set X of vertices of a graph G is said to be 1-dependent if the subgraph of G induced by X has maximum degree one. The 1-dependent Ramsey number t₁(l,m) is the smallest integer n such that for any 2-edge colouring (R,B) of Kₙ, the spanning subgraph B of Kₙ has a 1-dependent set of size l or the subgraph R has a 1-dependent set of size m. The 2-edge colouring (R,B) is a t₁(l,m) Ramsey colouring of Kₙ if B (R, respectively) does not contain a 1-dependent set of size l (m, respectively);...

Vertex coloring the square of outerplanar graphs of low degree

Geir Agnarsson, Magnús M. Halldórsson (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Vertex colorings of the square of an outerplanar graph have received a lot of attention recently. In this article we prove that the chromatic number of the square of an outerplanar graph of maximum degree Δ = 6 is 7. The optimal upper bound for the chromatic number of the square of an outerplanar graph of maximum degree Δ ≠ 6 is known. Hence, this mentioned chromatic number of 7 is the last and only unknown upper bound of the chromatic number in terms of Δ.

Some applications of pq-groups in graph theory

Geoffrey Exoo (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We describe some new applications of nonabelian pq-groups to construction problems in Graph Theory. The constructions include the smallest known trivalent graph of girth 17, the smallest known regular graphs of girth five for several degrees, along with four edge colorings of complete graphs that improve lower bounds on classical Ramsey numbers.

Ramseyan properties of graphs.

DeLaVina, Ermelinda, Fajtlowicz, Siemion (1996)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

2-distance 4-colorability of planar subcubic graphs with girth at least 22

Oleg V. Borodin, Anna O. Ivanova (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.