The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Distance defined by spanning trees in graphs”

Spanning caterpillars with bounded diameter

Ralph Faudree, Ronald Gould, Michael Jacobson, Linda Lesniak (1995)

Discussiones Mathematicae Graph Theory

Similarity:

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most c n 3 / 4 (at most n).

Signpost systems and spanning trees of graphs

Ladislav Nebeský (2006)

Czechoslovak Mathematical Journal

Similarity:

By a ternary system we mean an ordered pair ( W , R ) , where W is a finite nonempty set and R W × W × W . By a signpost system we mean a ternary system ( W , R ) satisfying the following conditions for all x , y , z W : if ( x , y , z ) R , then ( y , x , x ) R and ( y , x , z ) R ; if x y , then there exists t W such that ( x , t , y ) R . In this paper, a signpost system is used as a common description of a connected graph and a spanning tree of the graph. By a ct-pair we mean an ordered pair ( G , T ) , where G is a connected graph and T is a spanning tree of G . If ( G , T ) is a ct-pair, then by...

Extreme geodesic graphs

Gary Chartrand, Ping Zhang (2002)

Czechoslovak Mathematical Journal

Similarity:

For two vertices u and v of a graph G , the closed interval I [ u , v ] consists of u , v , and all vertices lying in some u -- v geodesic of G , while for S V ( G ) , the set I [ S ] is the union of all sets I [ u , v ] for u , v S . A set S of vertices of G for which I [ S ] = V ( G ) is a geodetic set for G , and the minimum cardinality of a geodetic set is the geodetic number g ( G ) . A vertex v in G is an extreme vertex if the subgraph induced by its neighborhood is complete. The number of extreme vertices in G is its extreme order e x ( G ) . A graph G is an...

Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees

Jernej Azarija, Riste Škrekovski (2013)

Mathematica Bohemica

Similarity:

Let α ( n ) be the least number k for which there exists a simple graph with k vertices having precisely n 3 spanning trees. Similarly, define β ( n ) as the least number k for which there exists a simple graph with k edges having precisely n 3 spanning trees. As an n -cycle has exactly n spanning trees, it follows that α ( n ) , β ( n ) n . In this paper, we show that α ( n ) 1 3 ( n + 4 ) and β ( n ) 1 3 ( n + 7 ) if and only if n { 3 , 4 , 5 , 6 , 7 , 9 , 10 , 13 , 18 , 22 } , which is a subset of Euler’s idoneal numbers. Moreover, if n ¬ 2 ( mod 3 ) and n 25 we show that α ( n ) 1 4 ( n + 9 ) and β ( n ) 1 4 ( n + 13 ) . This improves some previously estabilished...

Closure for spanning trees and distant area

Jun Fujisawa, Akira Saito, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with d e g G u + d e g G v n - 1 , G has a spanning k-ended tree if and only if G+uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. We investigate the relationship between the condition on d e g G u + d e g G v and the structure of the distant area for u and v. We prove...

On upper traceable numbers of graphs

Futaba Okamoto, Ping Zhang (2008)

Mathematica Bohemica

Similarity:

For a connected graph G of order n 2 and a linear ordering s : v 1 , v 2 , ... , v n of vertices of G , d ( s ) = i = 1 n - 1 d ( v i , v i + 1 ) , where d ( v i , v i + 1 ) is the distance between v i and v i + 1 . The upper traceable number t + ( G ) of G is t + ( G ) = max { d ( s ) } , where the maximum is taken over all linear orderings s of vertices of G . It is known that if T is a tree of order n 3 , then 2 n - 3 t + ( T ) n 2 / 2 - 1 and t + ( T ) n 2 / 2 - 3 if T P n . All pairs n , k for which there exists a tree T of order n and t + ( T ) = k are determined and a characterization of all those trees of order n 4 with upper traceable number n 2 / 2 - 3 is established. For a connected...