Displaying similar documents to “Trestles in polyhedral graphs”

New sufficient conditions for hamiltonian and pancyclic graphs

Ingo Schiermeyer, Mariusz Woźniak (2007)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G of order n we consider the unique partition of its vertex set V(G) = A ∪ B with A = {v ∈ V(G): d(v) ≥ n/2} and B = {v ∈ V(G):d(v) < n/2}. Imposing conditions on the vertices of the set B we obtain new sufficient conditions for hamiltonian and pancyclic graphs.

Hamiltonicity in multitriangular graphs

Peter J. Owens, Hansjoachim Walther (1995)

Discussiones Mathematicae Graph Theory

Similarity:

The family of 5-valent polyhedral graphs whose faces are all triangles or 3s-gons, s ≥ 9, is shown to contain non-hamiltonian graphs and to have a shortness exponent smaller than one.

Supermagic Generalized Double Graphs 1

Jaroslav Ivančo (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.