The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the existence of a cycle of length at least 7 in a (1,≤ 2)-twin-free graph”

On long cycles through four prescribed vertices of a polyhedral graph

Jochen Harant, Stanislav Jendrol', Hansjoachim Walther (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs

Wojciech Wide (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be pancyclic if it contains cycles of all lengths k for k ∈ {3, . . . , n}. A vertex v ∈ V (G) is called super-heavy if the number of its neighbours in G is at least (n+1)/2. For a given graph H we say that G is H-f1-heavy if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at least one of them is super-heavy. For a family of graphs H we say that G is H-f1-heavy, if G is H-f1-heavy for...

Forbidden Pairs and (k,m)-Pancyclicity

Charles Brian Crane (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be (k, m)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each r ∈ {m, m+1, . . . , n}. This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree, Gould, Jacobson, and Lesniak in 2004. The notion of (k, m)-pancyclicity provides one way to measure the prevalence of cycles in a graph. We consider pairs of subgraphs that, when forbidden, guarantee hamiltonicity for 2-connected graphs...

Partitioning a planar graph without chordal 5-cycles into two forests

Yang Wang, Weifan Wang, Jiangxu Kong, Yiqiao Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.