Displaying similar documents to “Upper bounds on the b-chromatic number and results for restricted graph classes”

Fall coloring of graphs I

Rangaswami Balakrishnan, T. Kavaskar (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A fall coloring of a graph G is a proper coloring of the vertex set of G such that every vertex of G is a color dominating vertex in G (that is, it has at least one neighbor in each of the other color classes). The fall coloring number χ f ( G ) of G is the minimum size of a fall color partition of G (when it exists). Trivially, for any graph G, χ ( G ) χ f ( G ) . In this paper, we show the existence of an infinite family of graphs G with prescribed values for χ(G) and χ f ( G ) . We also obtain the smallest non-fall...

3-consecutive c-colorings of graphs

Csilla Bujtás, E. Sampathkumar, Zsolt Tuza, M.S. Subramanya, Charles Dominic (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number ( χ ̅ ) 3 C C ( G ) of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with ( χ ̅ ) 3 C C ( G ) k for k = 3 and k = 4.

Hajós' theorem for list colorings of hypergraphs

Claude Benzaken, Sylvain Gravier, Riste Skrekovski (2003)

Discussiones Mathematicae Graph Theory

Similarity:

A well-known theorem of Hajós claims that every graph with chromathic number greater than k can be constructed from disjoint copies of the complete graph K k + 1 by repeated application of three simple operations. This classical result has been extended in 1978 to colorings of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs by S. Gravier. In this note, we capture both variations to extend Hajós’ theorem to list-colorings of hypergraphs.

Radio k-labelings for Cartesian products of graphs

Mustapha Kchikech, Riadh Khennoufa, Olivier Togni (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that | f ( x ) - f ( y ) | k + 1 - d G ( x , y ) , for any two vertices x and y, where d G ( x , y ) is the distance between x and y in G. The radio k-chromatic...

Graph colorings with local constraints - a survey

Zsolt Tuza (1997)

Discussiones Mathematicae Graph Theory

Similarity:

We survey the literature on those variants of the chromatic number problem where not only a proper coloring has to be found (i.e., adjacent vertices must not receive the same color) but some further local restrictions are imposed on the color assignment. Mostly, the list colorings and the precoloring extensions are considered. In one of the most general formulations, a graph G = (V,E), sets L(v) of admissible colors, and natural numbers c v for the vertices v ∈ V are given, and the question...

On Ramsey ( K 1 , 2 , C ) -minimal graphs

Tomás Vetrík, Lyra Yulianti, Edy Tri Baskoro (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For graphs F, G and H, we write F → (G,H) to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H. The graph F is Ramsey (G,H)-minimal if F → (G,H) but F* ↛ (G,H) for any proper subgraph F* ⊂ F. We present an infinite family of Ramsey ( K 1 , 2 , C ) -minimal graphs of any diameter ≥ 4.

Acyclic reducible bounds for outerplanar graphs

Mieczysław Borowiecki, Anna Fiedorowicz, Mariusz Hałuszczak (2009)

Discussiones Mathematicae Graph Theory

Similarity:

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. G [ V i ] i for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that u V i and v V j is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring....

On generalized shift graphs

Christian Avart, Tomasz Łuczak, Vojtěch Rödl (2014)

Fundamenta Mathematicae

Similarity:

In 1968 Erdős and Hajnal introduced shift graphs as graphs whose vertices are the k-element subsets of [n] = 1,...,n (or of an infinite cardinal κ ) and with two k-sets A = a , . . . , a k and B = b , . . . , b k joined if a < a = b < a = b < < a k = b k - 1 < b k . They determined the chromatic number of these graphs. In this paper we extend this definition and study the chromatic number of graphs defined similarly for other types of mutual position with respect to the underlying ordering. As a consequence of our result, we show the existence of a graph with...

On choosability of complete multipartite graphs K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 )

Guo-Ping Zheng, Yu-Fa Shen, Zuo-Li Chen, Jin-Feng Lv (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba’s conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba’s conjecture is true for complete multipartite graphs K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 ) for all integers t ≥ 1 and k ≥ 2t+2, that is, c h ( K 4 , 3 * t , 2 * ( k - 2 t - 2 ) , 1 * ( t + 1 ) ) = k , which extends the results c h ( K 4 , 3 , 2 * ( k - 4 ) , 1 * 2 ) = k given by Shen et al. (Discrete Math. 308 (2008) 136-143), and c h ( K 4 , 3 * 2 , 2 * ( k - 6 ) , 1 * 3 ) = k ...

Set colorings in perfect graphs

Ralucca Gera, Futaba Okamoto, Craig Rasmussen, Ping Zhang (2011)

Mathematica Bohemica

Similarity:

For a nontrivial connected graph G , let c : V ( G ) be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v V ( G ) , the neighborhood color set NC ( v ) is the set of colors of the neighbors of v . The coloring c is called a set coloring if NC ( u ) NC ( v ) for every pair u , v of adjacent vertices of G . The minimum number of colors required of such a coloring is called the set chromatic number χ s ( G ) . We show that the decision variant of determining χ s ( G ) is NP-complete in the general case, and show that...

Radio numbers for generalized prism graphs

Paul Martinez, Juan Ortiz, Maggy Tomova, Cindy Wyels (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted Z n , s , s ≥ 1, n ≥ s, have vertex set (i,j) | i = 1,2 and j = 1,...,n and edge set ((i,j),(i,j ±1)) ∪ ((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋. In this paper we determine...

Radio antipodal colorings of graphs

Gary Chartrand, David Erwin, Ping Zhang (2002)

Mathematica Bohemica

Similarity:

A radio antipodal coloring of a connected graph G with diameter d is an assignment of positive integers to the vertices of G , with x V ( G ) assigned c ( x ) , such that d ( u , v ) + | c ( u ) - c ( v ) | d for every two distinct vertices u , v of G , where d ( u , v ) is the distance between u and v in G . The radio antipodal coloring number a c ( c ) of a radio antipodal coloring c of G is the maximum color assigned to a vertex of G . The radio antipodal chromatic number a c ( G ) of G is min { a c ( c ) } over all radio antipodal colorings c of G . Radio antipodal chromatic numbers...

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

Maximum Edge-Colorings Of Graphs

Stanislav Jendrol’, Michaela Vrbjarová (2016)

Discussiones Mathematicae Graph Theory

Similarity:

An r-maximum k-edge-coloring of G is a k-edge-coloring of G having a property that for every vertex v of degree dG(v) = d, d ≥ r, the maximum color, that is present at vertex v, occurs at v exactly r times. The r-maximum index [...] χr′(G) χ r ' ( G ) is defined to be the minimum number k of colors needed for an r-maximum k-edge-coloring of graph G. In this paper we show that [...] χr′(G)≤3 χ r ' ( G ) 3 for any nontrivial connected graph G and r = 1 or 2. The bound 3 is tight. All graphs G with [...] χ1′(G)=i...

Generalized list colourings of graphs

Mieczysław Borowiecki, Ewa Drgas-Burchardt, Peter Mihók (1995)

Discussiones Mathematicae Graph Theory

Similarity:

We prove: (1) that c h P ( G ) - χ P ( G ) can be arbitrarily large, where c h P ( G ) and χ P ( G ) are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.

Edge-connectivity of strong products of graphs

Bostjan Bresar, Simon Spacapan (2007)

Discussiones Mathematicae Graph Theory

Similarity:

The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ 1,2 either x i = y i or x i y i E ( G i ) . In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals minδ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|). In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.

Maximal k-independent sets in graphs

Mostafa Blidia, Mustapha Chellali, Odile Favaron, Nacéra Meddah (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A subset of vertices of a graph G is k-independent if it induces in G a subgraph of maximum degree less than k. The minimum and maximum cardinalities of a maximal k-independent set are respectively denoted iₖ(G) and βₖ(G). We give some relations between βₖ(G) and β j ( G ) and between iₖ(G) and i j ( G ) for j ≠ k. We study two families of extremal graphs for the inequality i₂(G) ≤ i(G) + β(G). Finally we give an upper bound on i₂(G) and a lower bound when G is a cactus.