Displaying similar documents to “Domination, Eternal Domination, and Clique Covering”

Paired-domination

S. Fitzpatrick, B. Hartnell (1998)

Discussiones Mathematicae Graph Theory

Similarity:

We are interested in dominating sets (of vertices) with the additional property that the vertices in the dominating set can be paired or matched via existing edges in the graph. This could model the situation of guards or police where each has a partner or backup. This paper will focus on those graphs in which the number of matched pairs of a minimum dominating set of this type equals the size of some maximal matching in the graph. In particular, we characterize the leafless graphs of...

Graphs with equal domination and 2-distance domination numbers

Joanna Raczek (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. The distance between two vertices u and v in a connected graph G is the length of the shortest (u-v) path in G. A set D ⊆ V(G) is a dominating set if every vertex of G is at distance at most 1 from an element of D. The domination number of G is the minimum cardinality of a dominating set of G. A set D ⊆ V(G) is a 2-distance dominating set if every vertex of G is at distance at most 2 from an element of D. The 2-distance domination number of G is the minimum...

On the Totalk-Domination in Graphs

Sergio Bermudo, Juan C. Hernández-Gómez, José M. Sigarreta (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V, E) be a graph; a set S ⊆ V is a total k-dominating set if every vertex v ∈ V has at least k neighbors in S. The total k-domination number γkt(G) is the minimum cardinality among all total k-dominating sets. In this paper we obtain several tight bounds for the total k-domination number of a graph. In particular, we investigate the relationship between the total k-domination number of a graph and the order, the size, the girth, the minimum and maximum degree, the diameter,...

Total domination subdivision numbers of graphs

Teresa W. Haynes, Michael A. Henning, Lora S. Hopkins (2004)

Discussiones Mathematicae Graph Theory

Similarity:

A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number...

Various Bounds for Liar’s Domination Number

Abdollah Alimadadi, Doost Ali Mojdeh, Nader Jafari Rad (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if Uv∈S N[v] = V , where N[v] is the closed neighborhood of v. Let L ⊆ V be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in L ∩ N[v] can report that v is the location of the intruder, but (at most) one x ∈ L ∩ N[v] can report any w ∈ N[x] as the intruder location or x can indicate that there is no intruder in N[x]. A dominating set L is called a liar’s dominating set if every v ∈ V...

On the p-domination number of cactus graphs

Mostafa Blidia, Mustapha Chellali, Lutz Volkmann (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.

Paired- and induced paired-domination in {E,net}-free graphs

Oliver Schaudt (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by...

Domination and leaf density in graphs

Anders Sune Pedersen (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V(G) with the property that each vertex of V(G)-D is adjacent to at least one vertex of D. For a graph G with n vertices we define ε(G) to be the number of leaves in G minus the number of stems in G, and we define the leaf density ζ(G) to equal ε(G)/n. We prove that for any graph G with no isolated vertex, γ(G) ≤ n(1- ζ(G))/2 and we characterize the extremal graphs for this bound. Similar results are...

A Note on the Locating-Total Domination in Graphs

Mirka Miller, R. Sundara Rajan, R. Jayagopal, Indra Rajasingh, Paul Manuel (2017)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we obtain a sharp (improved) lower bound on the locating-total domination number of a graph, and show that the decision problem for the locating-total domination is NP-complete.

A note on domination in bipartite graphs

Tobias Gerlach, Jochen Harant (2002)

Discussiones Mathematicae Graph Theory

Similarity:

DOMINATING SET remains NP-complete even when instances are restricted to bipartite graphs, however, in this case VERTEX COVER is solvable in polynomial time. Consequences to VECTOR DOMINATING SET as a generalization of both are discussed.

γ-graphs of graphs

Gerd H. Fricke, Sandra M. Hedetniemi, Stephen T. Hedetniemi, Kevin R. Hutson (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in V -S is adjacent to at least one vertex in S. The domination number γ(G) of G equals the minimum cardinality of a dominating set S in G; we say that such a set S is a γ-set. In this paper we consider the family of all γ-sets in a graph G and we define the γ-graph G(γ) = (V(γ), E(γ)) of G to be the graph whose vertices V(γ) correspond 1-to-1 with the γ-sets of G, and two γ-sets, say D₁ and D₂, are adjacent in E(γ)...

Hereditary domination and independence parameters

Wayne Goddard, Teresa Haynes, Debra Knisley (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.

Total Domination Multisubdivision Number of a Graph

Diana Avella-Alaminos, Magda Dettlaff, Magdalena Lemańska, Rita Zuazua (2015)

Discussiones Mathematicae Graph Theory

Similarity:

The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination...

On H-Irregularity Strength Of Graphs

Faraha Ashraf, Martin Bača, Marcela Lascśaková, Andrea Semaničová-Feňovčíková (2017)

Discussiones Mathematicae Graph Theory

Similarity:

New graph characteristic, the total H-irregularity strength of a graph, is introduced. Estimations on this parameter are obtained and for some families of graphs the precise values of this parameter are proved.

Domination Parameters of a Graph and its Complement

Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

On The Roman Domination Stable Graphs

Majid Hajian, Nader Jafari Rad (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A Roman dominating function (or just RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = Pu2V (G) f(u). The Roman domination number of a graph G, denoted by R(G), is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under...

Two Short Proofs on Total Domination

Allan Bickle (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph Υt (G) is the minimum size of a total dominating set. We provide a short proof of the result that Υt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.

Lower bounds for the domination number

Ermelinda Delaviña, Ryan Pepper, Bill Waller (2010)

Discussiones Mathematicae Graph Theory

Similarity:

In this note, we prove several lower bounds on the domination number of simple connected graphs. Among these are the following: the domination number is at least two-thirds of the radius of the graph, three times the domination number is at least two more than the number of cut-vertices in the graph, and the domination number of a tree is at least as large as the minimum order of a maximal matching.

On Super (a, d)-H-Antimagic Total Covering of Star Related Graphs

K.M. Kathiresan, S. David Laurence (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V (G),E(G)) be a simple graph and H be a subgraph of G. G admits an H-covering, if every edge in E(G) belongs to at least one subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijection λ: V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)| + |E(G)|} such that for all subgraphs H′ isomorphic to H, the H′ weights [...] constitute an arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d where a and d are positive integers and n is the number of subgraphs...

On Generalized Sierpiński Graphs

Juan Alberto Rodríguez-Velázquez, Erick David Rodríguez-Bazan, Alejandro Estrada-Moreno (2017)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we obtain closed formulae for several parameters of generalized Sierpiński graphs S(G, t) in terms of parameters of the base graph G. In particular, we focus on the chromatic, vertex cover, clique and domination numbers.