Displaying similar documents to “Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory”

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for...

A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side

Martina Pavlačková (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.

Triple solutions for a Dirichlet boundary value problem involving a perturbed discretep(k)-Laplacian operator

Mohsen Khaleghi Moghadam, Johnny Henderson (2017)

Open Mathematics

Similarity:

Triple solutions are obtained for a discrete problem involving a nonlinearly perturbed one-dimensional p(k)-Laplacian operator and satisfying Dirichlet boundary conditions. The methods for existence rely on a Ricceri-local minimum theorem for differentiable functionals. Several examples are included to illustrate the main results.

Moving Dirichlet boundary conditions

Robert Altmann (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class...

The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

Yannick Privat, Mario Sigalotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing...

Exact controllability of the 1-d wave equation from a moving interior point

Carlos Castro (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the linear wave equation with Dirichlet boundary conditions in a bounded interval, and with a control acting on a moving point. We give sufficient conditions on the trajectory of the control in order to have the exact controllability property.