Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization.
Andrei, Neculai (2011)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Andrei, Neculai (2011)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Zainab Hassan Ahmed, Mohamed Hbaib, Khalil K. Abbo (2024)
Applications of Mathematics
Similarity:
The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms...
M. A. Diniz-Ehrhardt, Zdeněk Dostál, M. A. Gomes-Ruggiero, J. M. Martínez, Sandra Augusta Santos (2001)
Applications of Mathematics
Similarity:
An algorithm for quadratic minimization with simple bounds is introduced, combining, as many well-known methods do, active set strategies and projection steps. The novelty is that here the criterion for acceptance of a projected trial point is weaker than the usual ones, which are based on monotone decrease of the objective function. It is proved that convergence follows as in the monotone case. Numerical experiments with bound-constrained quadratic problems from CUTE collection show...
Pospíšil, Lukáš, Dostál, Zdeněk
Similarity:
The numerical solution of granular dynamics problems with Coulomb friction leads to the problem of minimizing a convex quadratic function with semidefinite Hessian subject to a separable conical constraints. In this paper, we are interested in the numerical solution of this problem. We suggest a modification of an active-set optimal quadratic programming algorithm. The number of projection steps is decreased by using a projected Barzilai-Borwein method. In the numerical experiment, we...