Displaying similar documents to “An optimal shape design problem for a hyperbolic hemivariational inequality”

Robust Shape Reconstruction and Optimal Transportation

Pierre Alliez, Simon Giraudot, David Cohen-Steiner (2013)

Actes des rencontres du CIRM

Similarity:

We describe a framework for robust shape reconstruction from raw point sets, based on optimal transportation between measures, where the input point sets are seen as distribution of masses. In addition to robustness to defect-laden point sets, hampered with noise and outliers, our approach can reconstruct smooth closed shapes as well as piecewise smooth shapes with boundaries.

An Optimum Design Problem in Magnetostatics

Antoine Henrot, Grégory Villemin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.

Optimal design of cylindrical shells

Peter Nestler, Werner H. Schmidt (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the...

Optimal design of turbines with an attached mass

Boris P. Belinskiy, C. Maeve McCarthy, Terry J. Walters (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.