The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence results for a fourth order partial differential equation arising in condensed matter physics”

On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

Piotr Biler, Lorenzo Brandolese (2009)

Studia Mathematica

Similarity:

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system

Yutaro Chiyo (2023)

Archivum Mathematicum

Similarity:

This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.

A note on the paper of Y. Naito

Piotr Biler (2006)

Banach Center Publications

Similarity:

This note contains some remarks on the paper of Y. Naito concerning the parabolic system of chemotaxis and published in this volume.

Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source

Ji Liu, Jia-Shan Zheng (2015)

Czechoslovak Mathematical Journal

Similarity:

We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of...