Displaying similar documents to “Asymptotics of a Time-Splitting Scheme for the Random Schrödinger Equation with Long-Range Correlations”

Lifshitz tails for some non monotonous random models

Frédéric Klopp, Shu Nakamura (2007-2008)

Séminaire Équations aux dérivées partielles

Similarity:

In this talk, we describe some recent results on the Lifshitz behavior of the density of states for non monotonous random models. Non monotonous means that the random operator is not a monotonous function of the random variables. The models we consider will mainly be of alloy type but in some cases we also can apply our methods to random displacement models.

Corrector Analysis of a Heterogeneous Multi-scale Scheme for Elliptic Equations with Random Potential

Guillaume Bal, Wenjia Jing (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper analyzes the random fluctuations obtained by a heterogeneous multi-scale first-order finite element method applied to solve elliptic equations with a random potential. Several multi-scale numerical algorithms have been shown to correctly capture the homogenized limit of solutions of elliptic equations with coefficients modeled as stationary and ergodic random fields. Because theoretical results are available in the continuum setting for such equations, we consider here the...

On Bernoulli decomposition of random variables and recent various applications

François Germinet (2007-2008)

Séminaire Équations aux dérivées partielles

Similarity:

In this review, we first recall a recent Bernoulli decomposition of any given non trivial real random variable. While our main motivation is a proof of universal occurence of Anderson localization in continuum random Schrödinger operators, we review other applications like Sperner theory of antichains, anticoncentration bounds of some functions of random variables, as well as singularity of random matrices.

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.

Localization for Schrödinger operators with Poisson random potential

Abel Klein, Peter Hislop, François Germinet (2007)

Journal of the European Mathematical Society

Similarity:

We prove exponential and dynamical localization for the Schr¨odinger operator with a nonnegative Poisson random potential at the bottom of the spectrum in any dimension. We also conclude that the eigenvalues in that spectral region of localization have finite multiplicity. We prove similar localization results in a prescribed energy interval at the bottom of the spectrum provided the density of the Poisson process is large enough.

Weak Asymptotics for Schrödinger Evolution

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.

Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in 𝐙 d

Wei-Min Wang (1999)

Journées équations aux dérivées partielles

Similarity:

By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.