Propagation of analytic singularities up to non smooth boundary
Pierre Schapira (1987)
Journées équations aux dérivées partielles
Similarity:
Pierre Schapira (1987)
Journées équations aux dérivées partielles
Similarity:
Ingo Waschkies (2004)
Bulletin de la Société Mathématique de France
Similarity:
In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.
Andrea d' Agnolo (1992)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
M. Kashiwara, P. Schapira (1984-1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Jean-André Marti (2010)
Banach Center Publications
Similarity:
A review of some methods in sheaf theory is presented to make precise a general concept of regularity in algebras or spaces of generalized functions. This leads to the local analysis of the sections of sheaves or presheaves under consideration and then to microlocal analysis and microlocal asymptotic analysis.
Arthur D. Gorman (1996)
Applications of Mathematics
Similarity:
Rossby wave equations characterize a class of wave phenomena occurring in geophysical fluid dynamics. One technique useful in the analysis of these waves is the geometrical optics, or multi-dimensional WKB technique. Near caustics, e.g., in critical regions, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to study Rossby waves near caustics.
M. Kashiwara, T. Kawai (1972-1973)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Yves Laurent (1993)
Compositio Mathematica
Similarity: