Displaying similar documents to “Incompressible Hydrodynamic Limits of the Boltzmann Equation : a Survey of Mathematical Results”

A Langevin Description for Driven Granular Gases

P. Maynar, M. I. García de Soria (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

The study of the fluctuations in the steady state of a heated granular system is reviewed. A Boltzmann-Langevin description can be built requiring consistency with the equations for the one- and two-particle correlation functions. From the Boltzmann-Langevin equation, Langevin equations for the total energy and the transverse velocity field are derived. The existence of a fluctuation-dissipation relation for the transverse velocity field...

The Boltzmann Equation: Mathematics and Applications

Carlo Cercignani (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

The paper is subdivided into two parts. The first presents a recent result by the author concerning the existence of the solution of the Boltzmann equation for Maxwell molecules, without any cutoff in the collision kernel, when the solution depends on just one variable. At variance with the well-known theorem of DiPerna- Lions, conservation of energy is also shown to hold. The second part will concern rarefied gas dynamics problems, governed by the Boltzmann equation and con- cerning...

Incompressible limit of a fluid-particle interaction model

Hongli Wang, Jianwei Yang (2021)

Applications of Mathematics

Similarity:

The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.

Fluid–particle shear flows

Bertrand Maury (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the...