Displaying similar documents to “Is GPU the future of Scientific Computing ?”

A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation

Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, Jacques Sainte-Marie (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic...

A discrete kinetic approximation for the incompressible Navier-Stokes equations

Maria Francesca Carfora, Roberto Natalini (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.

Abnormal prediction of dense crowd videos by a purpose-driven lattice Boltzmann model

Yiran Xue, Peng Liu, Ye Tao, Xianglong Tang (2017)

International Journal of Applied Mathematics and Computer Science

Similarity:

In the field of intelligent crowd video analysis, the prediction of abnormal events in dense crowds is a well-known and challenging problem. By analysing crowd particle collisions and characteristics of individuals in a crowd to follow the general trend of motion, a purpose-driven lattice Boltzmann model (LBM) is proposed. The collision effect in the proposed method is measured according to the variation in crowd particle numbers in the image nodes; characteristics of the crowd following...

The Lvov years of Wacław Sierpiński

Andrzej Schinzel (2009)

Banach Center Publications

Similarity:

An account is given of Sierpiński's activity in Lvov (1908-1918) interrupted by World War I.

Trend to equilibrium and spectral localization properties for the linear Boltzmann equation

Daniel Han-Kwan, Matthieu Léautaud (2013-2014)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

The aim of this note is to present the results from [11, 12], which deal with the linear Boltzmann equation, set in a bounded domain and in the presence of an external force. A specificity of these works is that the collision operator is allowed to be degenerate in the following two senses: (1) the associated collision kernel may vanish in a large subset of the phase space; (2) we do not assume that it is bounded below by a Maxwellian at infinity in velocity. We study: ...

Vorticity dynamics and numerical Resolution of Navier-Stokes Equations

Matania Ben-Artzi, Dalia Fishelov, Shlomo Trachtenberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present a new methodology for the numerical resolution of the hydrodynamics of incompressible viscid newtonian fluids. It is based on the Navier-Stokes equations and we refer to it as the vorticity projection method. The method is robust enough to handle complex and convoluted configurations typical to the motion of biological structures in viscous fluids. Although the method is applicable to three dimensions, we address here in detail only the two dimensional case. We provide numerical...

Staggered schemes for all speed flows

Raphaèle Herbin, Walid Kheriji, Jean-Claude Latche (2012)

ESAIM: Proceedings

Similarity:

We review in this paper a class of schemes for the numerical simulation of compressible flows. In order to ensure the stability of the discretizations in a wide range of Mach numbers and introduce sufficient decoupling for the numerical resolution, we choose to implement and study pressure correction schemes on staggered meshes. The implicit version of the schemes is also considered for the theoretical study. We give both algorithms for the barotropic Navier-Stokes equations, for the...

Formal passage from kinetic theory to incompressible Navier–Stokes equations for a mixture of gases

Marzia Bisi, Laurent Desvillettes (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present in this paper the formal passage from a kinetic model to the incompressible Navier−Stokes equations for a mixture of monoatomic gases with different masses. The starting point of this derivation is the collection of coupled Boltzmann equations for the mixture of gases. The diffusion coefficients for the concentrations of the species, as well as the ones appearing in the equations for velocity and temperature, are explicitly computed under the Maxwell molecule assumption in...

Generic principles of active transport

Mauro Mobilia, Tobias Reichenbach, Hauke Hinsch, Thomas Franosch, Erwin Frey (2008)

Banach Center Publications

Similarity:

Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intriguing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase transitions. These stochastic many-body features characterize transport processes in biology, soft condensed matter and, possibly, also in nanoscience. Inspired by these applications, a wide class of lattice-gas models has recently been considered. Building on...