Displaying similar documents to “Restriction to Levi subalgebras and generalization of the category 𝒪

On the relation between maximal rigid objects and τ-tilting modules

Pin Liu, Yunli Xie (2016)

Colloquium Mathematicae

Similarity:

This note compares τ-tilting modules and maximal rigid objects in the context of 2-Calabi-Yau triangulated categories. Let be a 2-Calabi-Yau triangulated category with suspension functor S. Let R be a maximal rigid object in and let Γ be the endomorphism algebra of R. Let F be the functor H o m ( R , - ) : m o d Γ . We prove that any τ-tilting module over Γ lifts uniquely to a maximal rigid object in via F, and in turn, that projection from to mod Γ sends the maximal rigid objects which have no direct summands...

T-Rickart modules

S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pish Hesari (2012)

Colloquium Mathematicae

Similarity:

We introduce the notions of T-Rickart and strongly T-Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that R is right Σ-t-extending if and only if every R-module is T-Rickart. Also, every free R-module is T-Rickart if and only if R = Z ( R R ) R ' , where R’ is a hereditary right R-module. Examples illustrating the results are presented.

Rigidity of generalized Verma modules

Oleksandr Khomenko, Volodymyr Mazorchuk (2002)

Colloquium Mathematicae

Similarity:

We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).

Parametric representations of BiHom-Hopf algebras

Xiaohui Zhang, Wei Wang, Juzhen Chen (2024)

Czechoslovak Mathematical Journal

Similarity:

The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new n -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.

Subcategories of the derived category and cotilting complexes

Aslak Bakke Buan (2001)

Colloquium Mathematicae

Similarity:

We show that there is a one-to-one correspondence between basic cotilting complexes and certain contravariantly finite subcategories of the bounded derived category of an artin algebra. This is a triangulated version of a result by Auslander and Reiten. We use this to find an existence criterion for complements to exceptional complexes.

Moduled categories and adjusted modules over traced rings

Daniel Simson

Similarity:

CONTENTS1. Introduction.......................................................................................52. Traced rings and adjusted modules..................................................93. Moduled categories.........................................................................214. Triangular adjustments....................................................................325. Categories of matrices and A M B -matrix modules...............436. Trace and cotrace reductions.........................................................477....

Relative Auslander-Reiten sequences for quasi-hereditary algebras

Karin Erdmann, José Antonio de la Peña, Corina Sáenz (2002)

Colloquium Mathematicae

Similarity:

Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).

The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules

Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang (2016)

Colloquium Mathematicae

Similarity:

We introduce the concept of relative Hom-Hopf modules and investigate their structure in a monoidal category ̃ ( k ) . More particularly, the fundamental theorem for relative Hom-Hopf modules is proved under the assumption that the Hom-comodule algebra is cleft. Moreover, Maschke’s theorem for relative Hom-Hopf modules is established when there is a multiplicative total Hom-integral.

Limits of tilting modules

Clezio A. Braga, Flávio U. Coelho (2009)

Colloquium Mathematicae

Similarity:

We study the problem of when a direct limit of tilting modules is still a tilting module.

Singular localization of 𝔤 -modules and applications to representation theory

Erik Backelin, Kobi Kremnitzer (2015)

Journal of the European Mathematical Society

Similarity:

We prove a singular version of Beilinson–Bernstein localization for a complex semi-simple Lie algebra following ideas from the positive characteristic case settled by [BMR06]. We apply this theory to translation functors, singular blocks in the Bernstein–Gelfand–Gelfand category O and Whittaker modules.

A family of noetherian rings with their finite length modules under control

Markus Schmidmeier (2002)

Czechoslovak Mathematical Journal

Similarity:

We investigate the category mod Λ of finite length modules over the ring Λ = A k Σ , where Σ is a V-ring, i.e. a ring for which every simple module is injective, k a subfield of its centre and A an elementary k -algebra. Each simple module E j gives rise to a quasiprogenerator P j = A E j . By a result of K. Fuller, P j induces a category equivalence from which we deduce that mod Λ j b a d h b o x P j . As a consequence we can (1) construct for each elementary k -algebra A over a finite field k a nonartinian noetherian ring Λ such that mod A mod Λ ,...