Displaying similar documents to “Positive coefficients case and oscillation”

Oscillation in deviating differential equations using an iterative method

George E. Chatzarakis, Irena Jadlovská (2019)

Communications in Mathematics

Similarity:

Sufficient oscillation conditions involving lim sup and lim inf for first-order differential equations with non-monotone deviating arguments and nonnegative coefficients are obtained. The results are based on the iterative application of the Grönwall inequality. Examples, numerically solved in MATLAB, are also given to illustrate the applicability and strength of the obtained conditions over known ones.

A note on the oscillation problems for differential equations with p ( t ) -Laplacian

Kōdai Fujimoto (2023)

Archivum Mathematicum

Similarity:

This paper deals with the oscillation problems on the nonlinear differential equation ( a ( t ) | x ' | p ( t ) - 2 x ' ) ' + b ( t ) | x | λ - 2 x = 0 involving p ( t ) -Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.

Oscillation of second-order quasilinear retarded difference equations via canonical transform

George E. Chatzarakis, Deepalakshmi Rajasekar, Saravanan Sivagandhi, Ethiraju Thandapani (2024)

Mathematica Bohemica

Similarity:

We study the oscillatory behavior of the second-order quasi-linear retarded difference equation Δ ( p ( n ) ( Δ y ( n ) ) α ) + η ( n ) y β ( n - k ) = 0 under the condition n = n 0 p - 1 α ( n ) < (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.

Forced oscillation of third order nonlinear dynamic equations on time scales

Baoguo Jia (2010)

Annales Polonici Mathematici

Similarity:

Consider the third order nonlinear dynamic equation x Δ Δ Δ ( t ) + p ( t ) f ( x ) = g ( t ) , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation Δ ³ x ( n ) + n α | x | γ s g n ( n ) = ( - 1 ) n c , where α ≥ -1, γ > 0, c > 3, is oscillatory.

Integral averaging technique for oscillation of damped half-linear oscillators

Yukihide Enaka, Masakazu Onitsuka (2018)

Czechoslovak Mathematical Journal

Similarity:

This paper is concerned with the oscillatory behavior of the damped half-linear oscillator ( a ( t ) φ p ( x ' ) ) ' + b ( t ) φ p ( x ' ) + c ( t ) φ p ( x ) = 0 , where φ p ( x ) = | x | p - 1 sgn x for x and p > 1 . A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young’s inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial...

Oscillation criteria for nonlinear differential equations with p ( t ) -Laplacian

Yutaka Shoukaku (2016)

Mathematica Bohemica

Similarity:

Recently there has been an increasing interest in studying p ( t ) -Laplacian equations, an example of which is given in the following form ( | u ' ( t ) | p ( t ) - 2 u ' ( t ) ) ' + c ( t ) | u ( t ) | q ( t ) - 2 u ( t ) = 0 , t > 0 . In particular, the first study of sufficient conditions for oscillatory solution of p ( t ) -Laplacian equations was made by Zhang (2007), but to our knowledge, there has not been a paper which gives the oscillatory conditions by utilizing Riccati inequality. Therefore, we establish sufficient conditions for oscillatory solution of nonlinear differential equations...

Oscillations of certain functional differential equations

Said R. Grace (1999)

Czechoslovak Mathematical Journal

Similarity:

Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations ( - 1 ) m + 1 d m y i ( t ) d t m + j = 1 n q i j y j ( t - h j j ) = 0 , m 1 , i = 1 , 2 , ... , n , to be oscillatory, where q i j ε ( - , ) , h j j ( 0 , ) , i , j = 1 , 2 , ... , n . Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations ( - 1 ) m + 1 d m d t m ( y i ( t ) + c y i ( t - g ) ) + j = 1 n q i j y j ( t - h ) = 0 , where c , g and h are real constants and i = 1 , 2 , ... , n .

On oscillation of solutions of forced nonlinear neutral differential equations of higher order II

N. Parhi, R. N. Rath (2003)

Annales Polonici Mathematici

Similarity:

Sufficient conditions are obtained so that every solution of [ y ( t ) - p ( t ) y ( t - τ ) ] ( n ) + Q ( t ) G ( y ( t - σ ) ) = f ( t ) where n ≥ 2, p,f ∈ C([0,∞),ℝ), Q ∈ C([0,∞),[0,∞)), G ∈ C(ℝ,ℝ), τ > 0 and σ ≥ 0, oscillates or tends to zero as t . Various ranges of p(t) are considered. In order to accommodate sublinear cases, it is assumed that 0 Q ( t ) d t = . Through examples it is shown that if the condition on Q is weakened, then there are sublinear equations whose solutions tend to ±∞ as t → ∞.

Bounded oscillation of nonlinear neutral differential equations of arbitrary order

Yeter Ş. Yilmaz, Ağacik Zafer (2001)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with oscillation properties of n -th order neutral differential equations of the form [ x ( t ) + c x ( τ ( t ) ) ] ( n ) + q ( t ) f x ( σ ( t ) ) = 0 , t t 0 > 0 , where c is a real number with | c | 1 , q C ( [ t 0 , ) , ) , f C ( , ) , τ , σ C ( [ t 0 , ) , + ) with τ ( t ) < t and lim t τ ( t ) = lim t σ ( t ) = . Sufficient conditions are established for the existence of positive solutions and for oscillation of bounded solutions of the above equation. Combination of these conditions provides necessary and sufficient conditions for oscillation of bounded solutions of the equation. Furthermore, the results are generalized to equations...