Displaying similar documents to “W-perfect groups”

On near-perfect and deficient-perfect numbers

Min Tang, Xiao-Zhi Ren, Meng Li (2013)

Colloquium Mathematicae

Similarity:

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.

Odd perfect numbers of a special form

Tomohiro Yamada (2005)

Colloquium Mathematicae

Similarity:

We show that there is an effectively computable upper bound of odd perfect numbers whose Euler factors are powers of fixed exponent.

On the uniform perfectness of groups of bundle homeomorphisms

Tomasz Rybicki (2019)

Archivum Mathematicum

Similarity:

Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.