The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs”

Large Degree Vertices in Longest Cycles of Graphs, I

Binlong Li, Liming Xiong, Jun Yin (2016)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.

Vertex-dominating cycles in 2-connected bipartite graphs

Tomoki Yamashita (2007)

Discussiones Mathematicae Graph Theory

Similarity:

A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.

A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs

Wojciech Wide (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be pancyclic if it contains cycles of all lengths k for k ∈ {3, . . . , n}. A vertex v ∈ V (G) is called super-heavy if the number of its neighbours in G is at least (n+1)/2. For a given graph H we say that G is H-f1-heavy if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at least one of them is super-heavy. For a family of graphs H we say that G is H-f1-heavy, if G is H-f1-heavy for...

On long cycles through four prescribed vertices of a polyhedral graph

Jochen Harant, Stanislav Jendrol', Hansjoachim Walther (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

Star-Cycle Factors of Graphs

Yoshimi Egawa, Mikio Kano, Zheng Yan (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S...