The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Riemann surfaces with boundary and natural triangulations of the Teichmüller space”

Mazes on surfaces

Izidor Hafner, Tomislav Zitko (2003)

Visual Mathematics

Similarity:

Legendrian dual surfaces in hyperbolic 3-space

Kentaro Saji, Handan Yıldırım (2015)

Annales Polonici Mathematici

Similarity:

We consider surfaces in hyperbolic 3-space and their duals. We study flat dual surfaces in hyperbolic 3-space by using extended Legendrian dualities between pseudo-hyperspheres in Lorentz-Minkowski 4-space. We define the flatness of a surface in hyperbolic 3-space by the degeneracy of its dual, which is similar to the case of the Gauss map of a surface in Euclidean 3-space. Such surfaces are a kind of ruled surfaces. Moreover, we investigate the singularities of these surfaces and the...

Two remarks about surfaces

Wilczyński, Władysław, Rzepecka, Genowefa (2015-11-26T16:01:41Z)

Acta Universitatis Lodziensis. Folia Mathematica

Similarity:

Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations

Georgi Ganchev, Vesselka Mihova (2013)

Open Mathematics

Similarity:

On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten...