Displaying similar documents to “The characteristic variety of a generic foliation”

On G-foliations

Robert Wolak (1985)

Annales Polonici Mathematici

Similarity:

Integrals for holomorphic foliations with singularities having all leaves compact

Xavier Gomez-Mont (1989)

Annales de l'institut Fourier

Similarity:

We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.

Leaves of foliations with a transverse geometric structure of finite type.

Robert A. Wolak (1989)

Publicacions Matemàtiques

Similarity:

In this short note we find some conditions which ensure that a G foliation of finite type with all leaves compact is a Riemannian foliation of equivalently the space of leaves of such a foliation is a Satake manifold. A particular attention is paid to transversaly affine foliations. We present several conditions which ensure completeness of such foliations.

Transversely homogeneous foliations

Robert A. Blumenthal (1979)

Annales de l'institut Fourier

Similarity:

A foliation of a manifold is transversely homogeneous if it can be defined by local submersions to a homogeneous space G / K which on overlaps differ by translations. We explore the topology and geometry of such foliations and give a structure theorem for the case when K is compact. We investigate the relationship between the structure equations of G and the normal bundle of the foliation and provide a differential forms characterization of a large class of homogeneous foliations. As a special...

Unfoldings of holomorphic foliations.

Xavier Gómez-Mont (1989)

Publicacions Matemàtiques

Similarity:

The objective of this paper is to give a criterium for an unfolding of a holomorphic foliation with singularities to be holomorphically trivial.

On transcendental automorphisms of algebraic foliations

B. Scárdua (2003)

Fundamenta Mathematicae

Similarity:

We study the group Aut(ℱ) of (self) isomorphisms of a holomorphic foliation ℱ with singularities on a complex manifold. We prove, for instance, that for a polynomial foliation on ℂ² this group consists of algebraic elements provided that the line at infinity ℂP(2)∖ℂ² is not invariant under the foliation. If in addition ℱ is of general type (cf. [20]) then Aut(ℱ) is finite. For a foliation with hyperbolic singularities at infinity, if there is a transcendental automorphism then the foliation...