Displaying similar documents to “Triangle-intersecting families of graphs”

Graphs for n-circular matroids

Renata Kawa (2010)

Discussiones Mathematicae Graph Theory

Similarity:

We give "if and only if" characterization of graphs with the following property: given n ≥ 3, edges of such graphs form matroids with circuits from the collection of all graphs with n fundamental cycles. In this way we refer to the notion of matroidal family defined by Simões-Pereira [2].

γ-labelings of complete bipartite graphs

Grady D. Bullington, Linda L. Eroh, Steven J. Winters (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Explicit formulae for the γ-min and γ-max labeling values of complete bipartite graphs are given, along with γ-labelings which achieve these extremes. A recursive formula for the γ-min labeling value of any complete multipartite is also presented.

Some globally determined classes of graphs

Ivica Bošnjak, Rozália Madarász (2018)

Czechoslovak Mathematical Journal

Similarity:

For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.

Remarks on the existence of uniquely partitionable planar graphs

Mieczysław Borowiecki, Peter Mihók, Zsolt Tuza, M. Voigt (1999)

Discussiones Mathematicae Graph Theory

Similarity:

We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (𝓓₁,𝓓₁)-partitionable planar graphs with respect to the property 𝓓₁ "to be a forest".