The genus of curves over finite fields with many rational points.
Fernando Torres, Rainer Fuhrmann (1996)
Manuscripta mathematica
Similarity:
Fernando Torres, Rainer Fuhrmann (1996)
Manuscripta mathematica
Similarity:
Yukihiro Uchida (2011)
Acta Arithmetica
Similarity:
Nils Bruin, E. Victor Flynn, Damiano Testa (2014)
Acta Arithmetica
Similarity:
We give a parametrization of curves C of genus 2 with a maximal isotropic (ℤ/3)² in J[3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3,3)-isogeny. We apply this to several examples, where it is shown that non-reducible Jacobians have non-trivial 3-part of the Tate-Shafarevich group.
Arnaldo Garcia, Saeed Tafazolian (2008)
Acta Arithmetica
Similarity:
L. Chiantini, C. Ciliberto (1995)
Manuscripta mathematica
Similarity:
Gerard van der Geer, Marcel van der Vlugt (1995)
Journal für die reine und angewandte Mathematik
Similarity:
J.F. Voloch (1991)
Bulletin de la Société Mathématique de France
Similarity:
Joe Harris (1980)
Mathematische Annalen
Similarity:
Jennifer Paulhus (2008)
Acta Arithmetica
Similarity:
Lomont, Chris (2002)
Experimental Mathematics
Similarity:
Kenji Ueno, Y. Namikawa (1973)
Manuscripta mathematica
Similarity:
S. Kamienny (1990)
Mathematische Annalen
Similarity:
Jürgen Rathmann (1989)
Mathematische Zeitschrift
Similarity:
O. Babelon, D. Bernard, F. A. Smirnov (1997)
Recherche Coopérative sur Programme n°25
Similarity:
Yves Aubry, Marc Perret (1995)
Manuscripta mathematica
Similarity:
Xavier Xarles (2013)
Journal de Théorie des Nombres de Bordeaux
Similarity:
In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.