The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a sum involving the Möbius function”

Maximal upper asymptotic density of sets of integers with missing differences from a given set

Ram Krishna Pandey (2015)

Mathematica Bohemica

Similarity:

Let M be a given nonempty set of positive integers and S any set of nonnegative integers. Let δ ¯ ( S ) denote the upper asymptotic density of S . We consider the problem of finding μ ( M ) : = sup S δ ¯ ( S ) , where the supremum is taken over all sets S satisfying that for each a , b S , a - b M . In this paper we discuss the values and bounds of μ ( M ) where M = { a , b , a + n b } for all even integers and for all sufficiently large odd integers n with a < b and gcd ( a , b ) = 1 .

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

Complete monotonicity of the remainder in an asymptotic series related to the psi function

Zhen-Hang Yang, Jing-Feng Tian (2024)

Czechoslovak Mathematical Journal

Similarity:

Let p , q with p - q 0 , σ = 1 2 ( p + q - 1 ) and s = 1 2 ( 1 - p + q ) , and let 𝒟 m ( x ; p , q ) = 𝒟 0 ( x ; p , q ) + k = 1 m B 2 k ( s ) 2 k ( x + σ ) 2 k , where 𝒟 0 ( x ; p , q ) = ψ ( x + p ) + ψ ( x + q ) 2 - ln ( x + σ ) . We establish the asymptotic expansion 𝒟 0 ( x ; p , q ) - n = 1 B 2 n ( s ) 2 n ( x + σ ) 2 n as x , where B 2 n ( s ) stands for the Bernoulli polynomials. Further, we prove that the functions ( - 1 ) m 𝒟 m ( x ; p , q ) and ( - 1 ) m + 1 𝒟 m ( x ; p , q ) are completely monotonic in x on ( - σ , ) for every m 0 if and only if p - q [ 0 , 1 2 ] and p - q = 1 , respectively. This not only unifies the two known results but also yields some new results.

Σ s -products revisited

Reynaldo Rojas-Hernández (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...