Displaying similar documents to “Simultaneous minimax estimation of parameters of multinomial distribution”

Numerical methods for linear minimax estimation

Norbert Gaffke, Berthold Heiligers (2000)

Discussiones Mathematicae Probability and Statistics

Similarity:

We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

On One Estimation Problem

Jelena Bulatović, Alobodanka Janjić (1979)

Publications de l'Institut Mathématique

Similarity:

Estimating a discrete distribution via histogram selection

Nathalie Akakpo (2011)

ESAIM: Probability and Statistics

Similarity:

Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties...

A sufficient condition for admissibility in linear estimation

Czesław Stępniak (1988)

Aplikace matematiky

Similarity:

It was recently shown that all estimators which are locally best in the relative interior of the parameter set, together with their limits constitute a complete class in linear estimation, both unbiased and biased. However, not all these limits are admissible. A sufficient condition for admissibility of a limit was given by the author (1986) for the case of unbiased estimation in a linear model with the natural parameter space. This paper extends this result to the general linear model...

Estimating a discrete distribution histogram selection

Nathalie Akakpo (2011)

ESAIM: Probability and Statistics

Similarity:

Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties...