Displaying similar documents to “Regularization of noncoercive constraints in Hencky plasticity”

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

Similarity:

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis...

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

Similarity:

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet....

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

Similarity:

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions

M. Chipot, I. Shafrir, G. Vergara Caffarelli (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

The energy of magneto-elastic materials is described by a nonconvex functional. Three terms of the total free energy are taken into account: the exchange energy, the elastic energy and the magneto-elastic energy usually adopted for cubic crystals. We focus our attention to a one dimensional penalty problem and study the gradient flow of the associated type Ginzburg-Landau functional. We prove the existence and uniqueness of a classical solution which tends asymptotically for subsequences...

Extended irreversible thermodynamics in hypoelasticity

Sebastiano Giambò, Annunziata Palumbo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The constitutive equations of rate type for a class of thermo-hypo-elastic materials are derived within the framework of the extended irreversible thermodynamics.

Betti's reciprocal theorem for Cosserat elastic shells

Franco Pastrone (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

It is proved that, as in three-dimensional elasticity, Betti's theorem represents a criterion for the existence of a stored-energy function for a Cosserat elastic shell.

Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids

Giulio Maier, Giorgio Novati (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material...

Ground states in complex bodies

Paolo Maria Mariano, Giuseppe Modica (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role...

Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids

Giulio Maier, Giorgio Novati (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material...

Extended irreversible thermodynamics in hypoelasticity

Sebastiano Giambò, Annunziata Palumbo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

The constitutive equations of rate type for a class of thermo-hypo-elastic materials are derived within the framework of the extended irreversible thermodynamics.