Displaying similar documents to “Bounds on sup-norms of half-integral weight modular forms”

Overconvergent modular forms

Vincent Pilloni (2013)

Annales de l’institut Fourier

Similarity:

We give a geometric definition of overconvergent modular forms of any p -adic weight. As an application, we reprove Coleman’s theory of p -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.

The second moment of quadratic twists of modular L-functions

K. Soundararajan, Matthew P. Young (2010)

Journal of the European Mathematical Society

Similarity:

We study the second moment of the central values of quadratic twists of a modular L -function. Unconditionally, we obtain a lower bound which matches the conjectured asymptotic formula, while on GRH we prove the asymptotic formula itself.

Classical and overconvergent modular forms of higher level

Robert F. Coleman (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

We define the notion overconvergent modular forms on Γ 1 ( N p n ) where p is a prime, N and n are positive integers and N is prime to p . We show that an overconvergent eigenform on Γ 1 ( N p n ) of weight k whose U p -eigenvalue has valuation strictly less than k - 1 is classical.

Hecke operators in half-integral weight

Soma Purkait (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In [], Shimura introduced modular forms of half-integral weight, their Hecke algebras and their relation to integral weight modular forms via the Shimura correspondence. For modular forms of integral weight, Sturm’s bounds give generators of the Hecke algebra as a module. We also have well-known recursion formulae for the operators T p with p prime. It is the purpose of this paper to prove analogous results in the half-integral weight setting. We also give an explicit formula for how operators...

On the slopes of the  U 5 operator acting on overconvergent modular forms

L. J. P Kilford (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We show that the slopes of the  U 5 operator acting on 5-adic overconvergent modular forms of weight  k with primitive Dirichlet character  χ of conductor 25 are given by either 1 4 · 8 i 5 : i or 1 4 · 8 i + 4 5 : i , depending on  k and  χ . We also prove that the space of classical cusp forms of weight  k and character  χ has a basis of eigenforms for the Hecke operators  T p and  U 5 which is defined over  Q 5 ( 5 4 , 3 ) .

Gauss–Manin connections for p -adic families of nearly overconvergent modular forms

Robert Harron, Liang Xiao (2014)

Annales de l’institut Fourier

Similarity:

We interpolate the Gauss–Manin connection in p -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type r to the space of nearly overconvergent modular forms of type r + 1 with p -adic weight shifted by 2 . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank...