Classical and overconvergent modular forms of higher level

Robert F. Coleman

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 2, page 395-403
  • ISSN: 1246-7405

Abstract

top
We define the notion overconvergent modular forms on Γ 1 ( N p n ) where p is a prime, N and n are positive integers and N is prime to p . We show that an overconvergent eigenform on Γ 1 ( N p n ) of weight k whose U p -eigenvalue has valuation strictly less than k - 1 is classical.

How to cite

top

Coleman, Robert F.. "Classical and overconvergent modular forms of higher level." Journal de théorie des nombres de Bordeaux 9.2 (1997): 395-403. <http://eudml.org/doc/248007>.

@article{Coleman1997,
abstract = {We define the notion overconvergent modular forms on $\Gamma _1(Np^n)$ where $p$ is a prime, $N$ and $n$ are positive integers and $N$ is prime to $p$. We show that an overconvergent eigenform on $\Gamma _1(Np^n)$ of weight $k$ whose $U_p$-eigenvalue has valuation strictly less than $k - 1$ is classical.},
author = {Coleman, Robert F.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {-adic overconvergent modular form},
language = {eng},
number = {2},
pages = {395-403},
publisher = {Université Bordeaux I},
title = {Classical and overconvergent modular forms of higher level},
url = {http://eudml.org/doc/248007},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Coleman, Robert F.
TI - Classical and overconvergent modular forms of higher level
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 395
EP - 403
AB - We define the notion overconvergent modular forms on $\Gamma _1(Np^n)$ where $p$ is a prime, $N$ and $n$ are positive integers and $N$ is prime to $p$. We show that an overconvergent eigenform on $\Gamma _1(Np^n)$ of weight $k$ whose $U_p$-eigenvalue has valuation strictly less than $k - 1$ is classical.
LA - eng
KW - -adic overconvergent modular form
UR - http://eudml.org/doc/248007
ER -

References

top
  1. [1] Coleman R., Reciprocity Laws on Curves, Compositio72 (1989), 205-235. Zbl0706.14013MR1030142
  2. [2] Coleman R., Classical and Overconvergent modular forms, Invent. Math.124 (1996), 215-241. Zbl0851.11030MR1369416
  3. [3] Edixhoven B., Stable models of modular curves and applications, Thesis, University of Utrecht (unpublished). 
  4. [4] Katz N., P-adic properties of modular schemes and modular forms Modular Functions of one Variable III, Springer Lecture Notes350 (197), 69-190. Zbl0271.10033MR447119
  5. [5] Katz N. and B. Mazur, Arithmetic Moduli of Elliptic Curves, Annals of Math. Stud.108, Princeton University Press, 1985. Zbl0576.14026MR772569
  6. [6] Mazur B. and A. Wiles, "Class fields and abelian extensions of Q", Invent. Math.76 (1984), 179-330. Zbl0545.12005MR742853
  7. [7] Li W., "Newforms and functional equations, ", Math. Ann.212 (1975), 285-315. Zbl0278.10026MR369263
  8. [8] Mazur B. and A. Wiles, "On p-adic analytic families of Galois representations", Compositio Math.59 (1986), 231-264. Zbl0654.12008MR860140
  9. [9] Ogg A., "On the eigenvalues of Hecke operators", Math. Ann.179 (1969), 101-108. Zbl0169.10102MR269597
  10. [10] Coleman R., p-adic Banach spaces and families of modular forms, Invent. math.127 (1992), 917-979. Zbl0918.11026MR1431135
  11. [11] Coleman R., p-adic Shimura Isomorphism and p-adic Periods of modular forms, Contemp. Math.165 (1997), 21-51. Zbl0838.11033MR1279600

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.