On the slopes of the  U 5 operator acting on overconvergent modular forms

L. J. P Kilford[1]

  • [1] Department of Mathematics Royal Fort Annexe University of Bristol BS8 1TW, United Kingdom

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 1, page 165-182
  • ISSN: 1246-7405

Abstract

top
We show that the slopes of the  U 5 operator acting on 5-adic overconvergent modular forms of weight  k with primitive Dirichlet character  χ of conductor 25 are given by either 1 4 · 8 i 5 : i or 1 4 · 8 i + 4 5 : i , depending on  k and  χ .We also prove that the space of classical cusp forms of weight  k and character  χ has a basis of eigenforms for the Hecke operators  T p and  U 5 which is defined over  Q 5 ( 5 4 , 3 ) .

How to cite

top

Kilford, L. J. P. "On the slopes of the ${U_5}$ operator acting on overconvergent modular forms." Journal de Théorie des Nombres de Bordeaux 20.1 (2008): 165-182. <http://eudml.org/doc/10826>.

@article{Kilford2008,
abstract = {We show that the slopes of the $U_5$ operator acting on 5-adic overconvergent modular forms of weight $k$ with primitive Dirichlet character $\chi $ of conductor 25 are given by either\[ \left\lbrace \frac\{1\}\{4\}\cdot \left\lfloor \frac\{8i\}\{5\}\right\rfloor : i \in \mathbb\{N\}\right\rbrace \text\{ or \}\left\lbrace \frac\{1\}\{4\}\cdot \left\lfloor \frac\{8i+4\}\{5\}\right\rfloor : i \in \mathbb\{N\}\right\rbrace , \]depending on $k$ and $\chi $.We also prove that the space of classical cusp forms of weight $k$ and character $\chi $ has a basis of eigenforms for the Hecke operators $T_p$ and $U_5$ which is defined over $\mathbf\{Q\}_5(\@root 4 \of \{5\},\sqrt\{3\})$.},
affiliation = {Department of Mathematics Royal Fort Annexe University of Bristol BS8 1TW, United Kingdom},
author = {Kilford, L. J. P},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {overconvergent modular forms; slopes of Hecke operators; modular curves},
language = {eng},
number = {1},
pages = {165-182},
publisher = {Université Bordeaux 1},
title = {On the slopes of the $\{U_5\}$ operator acting on overconvergent modular forms},
url = {http://eudml.org/doc/10826},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Kilford, L. J. P
TI - On the slopes of the ${U_5}$ operator acting on overconvergent modular forms
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 1
SP - 165
EP - 182
AB - We show that the slopes of the $U_5$ operator acting on 5-adic overconvergent modular forms of weight $k$ with primitive Dirichlet character $\chi $ of conductor 25 are given by either\[ \left\lbrace \frac{1}{4}\cdot \left\lfloor \frac{8i}{5}\right\rfloor : i \in \mathbb{N}\right\rbrace \text{ or }\left\lbrace \frac{1}{4}\cdot \left\lfloor \frac{8i+4}{5}\right\rfloor : i \in \mathbb{N}\right\rbrace , \]depending on $k$ and $\chi $.We also prove that the space of classical cusp forms of weight $k$ and character $\chi $ has a basis of eigenforms for the Hecke operators $T_p$ and $U_5$ which is defined over $\mathbf{Q}_5(\@root 4 \of {5},\sqrt{3})$.
LA - eng
KW - overconvergent modular forms; slopes of Hecke operators; modular curves
UR - http://eudml.org/doc/10826
ER -

References

top
  1. W. Bosma, J. Cannon,C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp. 24(3–4) (1997), 235–265. http://magma.maths.usyd.edu.au. Zbl0898.68039MR1484478
  2. K. Buzzard, Questions about slopes of modular forms. Astérisque 298 (2005), 1–15. Zbl1122.11025MR2141701
  3. K. Buzzard, F. Calegari, Slopes of overconvergent 2-adic modular forms. Compos. Math. 141(3) (2005), 591–604. Zbl1192.11037MR2135279
  4. K. Buzzard, L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3) (2005), 605–619. Zbl1187.11020MR2135280
  5. H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires. Lecture Notes in Mathematics 627 (1977), 69–78. Zbl0371.10020MR472703
  6. R. Coleman, Classical and overconvergent modular forms of higher level. J. Théor. Nombres Bordeaux 9(2) (1997), 395–403. Zbl0942.11025MR1617406
  7. R. Coleman, p -adic Banach spaces and families of modular forms. Invent. Math 127 (1997), 417–479. Zbl0918.11026MR1431135
  8. R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124(1–3) (1996), 215–241. Zbl0851.11030MR1369416
  9. M. Emerton, 2-adic Modular Forms of minimal slope. PhD thesis, Harvard University, 1998. 
  10. N. Katz, p -adic properties of modular forms and modular curves. Lecture Notes in Mathematics 350 (1973), 69–190. Zbl0271.10033MR447119
  11. L. J. P. Kilford, Slopes of 2-adic overconvergent modular forms with small level. Math. Res. Lett. 11(5–6) (2004), 723–739. Zbl1122.11027MR2106238
  12. D. Loeffler, Spectral expansions of overconvergent modular functions. Int. Math. Res. Not. IMRN 2007, no. 16, Art. ID rnm050. Zbl1132.11021MR2353090
  13. T. Miyake, Modular Forms. Springer, 1989. Zbl0701.11014MR1021004
  14. K. Ribet, Galois representations attached to eigenforms with Nebentypus. Lecture Notes in Mathematics 601 (1977), 17–51. Zbl0363.10015MR453647
  15. J.-P. Serre, Endomorphismes complètements continus des espaces de Banach p -adique Publ. Math. IHES 12 (1962), 69–85. Zbl0104.33601MR144186
  16. L. Smithline, Exploring slopes of p -adic modular forms. PhD thesis, University of California at Berkeley, 2000. 
  17. L. Smithline, Compact operators with rational generation. In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 287–294. Amer. Math. Soc., Providence, RI, 2004. Zbl1096.11018MR2076602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.