On the slopes of the operator acting on overconvergent modular forms
- [1] Department of Mathematics Royal Fort Annexe University of Bristol BS8 1TW, United Kingdom
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 1, page 165-182
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKilford, L. J. P. "On the slopes of the ${U_5}$ operator acting on overconvergent modular forms." Journal de Théorie des Nombres de Bordeaux 20.1 (2008): 165-182. <http://eudml.org/doc/10826>.
@article{Kilford2008,
abstract = {We show that the slopes of the $U_5$ operator acting on 5-adic overconvergent modular forms of weight $k$ with primitive Dirichlet character $\chi $ of conductor 25 are given by either\[ \left\lbrace \frac\{1\}\{4\}\cdot \left\lfloor \frac\{8i\}\{5\}\right\rfloor : i \in \mathbb\{N\}\right\rbrace \text\{ or \}\left\lbrace \frac\{1\}\{4\}\cdot \left\lfloor \frac\{8i+4\}\{5\}\right\rfloor : i \in \mathbb\{N\}\right\rbrace , \]depending on $k$ and $\chi $.We also prove that the space of classical cusp forms of weight $k$ and character $\chi $ has a basis of eigenforms for the Hecke operators $T_p$ and $U_5$ which is defined over $\mathbf\{Q\}_5(\@root 4 \of \{5\},\sqrt\{3\})$.},
affiliation = {Department of Mathematics Royal Fort Annexe University of Bristol BS8 1TW, United Kingdom},
author = {Kilford, L. J. P},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {overconvergent modular forms; slopes of Hecke operators; modular curves},
language = {eng},
number = {1},
pages = {165-182},
publisher = {Université Bordeaux 1},
title = {On the slopes of the $\{U_5\}$ operator acting on overconvergent modular forms},
url = {http://eudml.org/doc/10826},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Kilford, L. J. P
TI - On the slopes of the ${U_5}$ operator acting on overconvergent modular forms
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 1
SP - 165
EP - 182
AB - We show that the slopes of the $U_5$ operator acting on 5-adic overconvergent modular forms of weight $k$ with primitive Dirichlet character $\chi $ of conductor 25 are given by either\[ \left\lbrace \frac{1}{4}\cdot \left\lfloor \frac{8i}{5}\right\rfloor : i \in \mathbb{N}\right\rbrace \text{ or }\left\lbrace \frac{1}{4}\cdot \left\lfloor \frac{8i+4}{5}\right\rfloor : i \in \mathbb{N}\right\rbrace , \]depending on $k$ and $\chi $.We also prove that the space of classical cusp forms of weight $k$ and character $\chi $ has a basis of eigenforms for the Hecke operators $T_p$ and $U_5$ which is defined over $\mathbf{Q}_5(\@root 4 \of {5},\sqrt{3})$.
LA - eng
KW - overconvergent modular forms; slopes of Hecke operators; modular curves
UR - http://eudml.org/doc/10826
ER -
References
top- W. Bosma, J. Cannon,C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp. 24(3–4) (1997), 235–265. http://magma.maths.usyd.edu.au. Zbl0898.68039MR1484478
- K. Buzzard, Questions about slopes of modular forms. Astérisque 298 (2005), 1–15. Zbl1122.11025MR2141701
- K. Buzzard, F. Calegari, Slopes of overconvergent 2-adic modular forms. Compos. Math. 141(3) (2005), 591–604. Zbl1192.11037MR2135279
- K. Buzzard, L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3) (2005), 605–619. Zbl1187.11020MR2135280
- H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires. Lecture Notes in Mathematics 627 (1977), 69–78. Zbl0371.10020MR472703
- R. Coleman, Classical and overconvergent modular forms of higher level. J. Théor. Nombres Bordeaux 9(2) (1997), 395–403. Zbl0942.11025MR1617406
- R. Coleman, -adic Banach spaces and families of modular forms. Invent. Math 127 (1997), 417–479. Zbl0918.11026MR1431135
- R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124(1–3) (1996), 215–241. Zbl0851.11030MR1369416
- M. Emerton, 2-adic Modular Forms of minimal slope. PhD thesis, Harvard University, 1998.
- N. Katz, -adic properties of modular forms and modular curves. Lecture Notes in Mathematics 350 (1973), 69–190. Zbl0271.10033MR447119
- L. J. P. Kilford, Slopes of 2-adic overconvergent modular forms with small level. Math. Res. Lett. 11(5–6) (2004), 723–739. Zbl1122.11027MR2106238
- D. Loeffler, Spectral expansions of overconvergent modular functions. Int. Math. Res. Not. IMRN 2007, no. 16, Art. ID rnm050. Zbl1132.11021MR2353090
- T. Miyake, Modular Forms. Springer, 1989. Zbl0701.11014MR1021004
- K. Ribet, Galois representations attached to eigenforms with Nebentypus. Lecture Notes in Mathematics 601 (1977), 17–51. Zbl0363.10015MR453647
- J.-P. Serre, Endomorphismes complètements continus des espaces de Banach -adique Publ. Math. IHES 12 (1962), 69–85. Zbl0104.33601MR144186
- L. Smithline, Exploring slopes of -adic modular forms. PhD thesis, University of California at Berkeley, 2000.
- L. Smithline, Compact operators with rational generation. In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 287–294. Amer. Math. Soc., Providence, RI, 2004. Zbl1096.11018MR2076602
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.