Displaying similar documents to “A formula for Jack polynomials of the second order”

Deformed Heisenberg algebra with reflection and d -orthogonal polynomials

Fethi Bouzeffour, Hanen Ben Mansour, Ali Zaghouani (2017)

Czechoslovak Mathematical Journal

Similarity:

This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of d -orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when d = 1 . The underlying algebraic framework allowed a systematic...

Extendibility of polynomials and analytic functions on p

Daniel Carando (2001)

Studia Mathematica

Similarity:

We prove that extendible 2-homogeneous polynomials on spaces with cotype 2 are integral. This allows us to find examples of approximable non-extendible polynomials on p (1 ≤ p < ∞ ) of any degree. We also exhibit non-nuclear extendible polynomials for 4 < p < ∞. We study the extendibility of analytic functions on Banach spaces and show the existence of functions of infinite radius of convergence whose coefficients are finite type polynomials but which fail to be extendible. ...

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Similarity:

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

Quadratic polynomials, period polynomials, and Hecke operators

Marie Jameson, Wissam Raji (2013)

Acta Arithmetica

Similarity:

For any non-square 1 < D ≡ 0,1 (mod 4), Zagier defined F k ( D ; x ) : = a , b , c , a < 0 b 2 - 4 a c = D m a x ( 0 , ( a x 2 + b x + c ) k - 1 ) . Here we use the theory of periods to give identities and congruences which relate various values of F k ( D ; x ) .

Thom polynomials and Schur functions: the singularities I I I 2 , 3 ( - )

Özer Öztürk (2010)

Annales Polonici Mathematici

Similarity:

We give a closed formula for the Thom polynomials of the singularities I I I 2 , 3 ( - ) in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.

A generalisation of Amitsur's A-polynomials

Adam Owen, Susanne Pumplün (2021)

Communications in Mathematics

Similarity:

We find examples of polynomials f D [ t ; σ , δ ] whose eigenring ( f ) is a central simple algebra over the field F = C Fix ( σ ) Const ( δ ) .

Unconditionality for m-homogeneous polynomials on

Andreas Defant, Pablo Sevilla-Peris (2016)

Studia Mathematica

Similarity:

Let χ(m,n) be the unconditional basis constant of the monomial basis z α , α ∈ ℕ₀ⁿ with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex variables, endowed with the supremum norm on the n-dimensional unit polydisc ⁿ. We prove that the quotient of s u p m s u p m χ ( m , n ) m and √(n/log n) tends to 1 as n → ∞. This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials and their number n of variables. Moreover, we give an analogous formula for m-linear forms, a...

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

Lower bounds for norms of products of polynomials on L p spaces

Daniel Carando, Damián Pinasco, Jorge Tomás Rodríguez (2013)

Studia Mathematica

Similarity:

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on L p ( μ ) , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p . For p > 2 we present some estimates on the constants involved.

The Daugavet equation for polynomials

Yun Sung Choi, Domingo García, Manuel Maestre, Miguel Martín (2007)

Studia Mathematica

Similarity:

We study when the Daugavet equation is satisfied for weakly compact polynomials on a Banach space X, i.e. when the equality ||Id + P|| = 1 + ||P|| is satisfied for all weakly compact polynomials P: X → X. We show that this is the case when X = C(K), the real or complex space of continuous functions on a compact space K without isolated points. We also study the alternative Daugavet equation m a x | ω | = 1 | | I d + ω P | | = 1 + | | P | | for polynomials P: X → X. We show that this equation holds for every polynomial on the complex...

Approximation by weighted polynomials in k

Maritza M. Branker (2005)

Annales Polonici Mathematici

Similarity:

We apply pluripotential theory to establish results in k concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections Σ k a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact...

Rademacher-Carlitz polynomials

Matthias Beck, Florian Kohl (2014)

Acta Arithmetica

Similarity:

We introduce and study the Rademacher-Carlitz polynomial R ( u , v , s , t , a , b ) : = k = s s + b - 1 u ( k a + t ) / b v k where a , b > 0 , s,t ∈ ℝ, and u and v are variables. These polynomials generalize and unify various Dedekind-like sums and polynomials; most naturally, one may view R(u,v,s,t,a,b) as a polynomial analogue (in the sense of Carlitz) of the Dedekind-Rademacher sum r t ( a , b ) : = k = 0 b - 1 ( ( ( k a + t ) / b ) ) ( ( k / b ) ) , which appears in various number-theoretic, combinatorial, geometric, and computational contexts. Our results come in three flavors: we prove a reciprocity theorem for Rademacher-Carlitz...

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

Fejér–Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle

Jeffrey S. Geronimo, Plamen Iliev (2014)

Journal of the European Mathematical Society

Similarity:

We give a complete characterization of the positive trigonometric polynomials Q ( θ , ϕ ) on the bi-circle, which can be factored as Q ( θ , ϕ ) = | p ( e i θ , e i ϕ ) | 2 where p ( z , w ) is a polynomial nonzero for | z | = 1 and | w | 1 . The conditions are in terms of recurrence coefficients associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal with respect to the weight 1 4 π 2 Q ( θ , ϕ ) on the bi-circle. We use this result to describe how specific factorizations of weights on the bi-circle can be translated into identities...

A note on q -partial difference equations and some applications to generating functions and q -integrals

Da-Wei Niu, Jian Cao (2019)

Czechoslovak Mathematical Journal

Similarity:

We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan q -beta integrals. At last,...

Some results on derangement polynomials

Mehdi Hassani, Hossein Moshtagh, Mohammad Ghorbani (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study moments of the difference D n ( x ) - x n n ! e - 1 / x concerning derangement polynomials D n ( x ) . For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for x > 0 . For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.

Nonreciprocal algebraic numbers of small Mahler's measure

Artūras Dubickas, Jonas Jankauskas (2013)

Acta Arithmetica

Similarity:

We prove that there exist at least cd⁵ monic irreducible nonreciprocal polynomials with integer coefficients of degree at most d whose Mahler measures are smaller than 2, where c is some absolute positive constant. These polynomials are constructed as nonreciprocal divisors of some Newman hexanomials 1 + x r + + x r , where the integers 1 ≤ r₁ < ⋯ < r₅ ≤ d satisfy some restrictions including 2 r j < r j + 1 for j = 1,2,3,4. This result improves the previous lower bound cd³ and seems to be closer to the correct...