Displaying similar documents to “On a new method for enlarging the radius of convergence for Newton's method”

A weaker affine covariant Newton-Mysovskikh theorem for solving equations

Ioannis K. Argyros (2006)

Applicationes Mathematicae

Similarity:

The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical...

Local convergence theorems for Newton's method from data at one point

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.

On the convergence of two-step Newton-type methods of high efficiency index

Ioannis K. Argyros, Saïd Hilout (2009)

Applicationes Mathematicae

Similarity:

We introduce a new idea of recurrent functions to provide a new semilocal convergence analysis for two-step Newton-type methods of high efficiency index. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar type, and a differential equation containing a Green's kernel are also provided. ...

An improved convergence analysis of Newton's method for twice Fréchet differentiable operators

Ioannis K. Argyros, Sanjay K. Khattri (2013)

Applicationes Mathematicae

Similarity:

We develop local and semilocal convergence results for Newton's method in order to solve nonlinear equations in a Banach space setting. The results compare favorably to earlier ones utilizing Lipschitz conditions on the second Fréchet derivative of the operators involved. Numerical examples where our new convergence conditions are satisfied but earlier convergence conditions are not satisfied are also reported.

Expanding the applicability of two-point Newton-like methods under generalized conditions

Ioannis K. Argyros, Saïd Hilout (2013)

Applicationes Mathematicae

Similarity:

We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria...

New unifying convergence criteria for Newton-like methods

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...

Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions

Ioannis K. Argyros, Santhosh George (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

Local convergence of inexact Newton methods under affine invariant conditions and hypotheses on the second Fréchet derivative

Ioannis Argyros (1999)

Applicationes Mathematicae

Similarity:

We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative...

On the semilocal convergence of a two-step Newton-like projection method for ill-posed equations

Ioannis K. Argyros, Santhosh George (2013)

Applicationes Mathematicae

Similarity:

We present new semilocal convergence conditions for a two-step Newton-like projection method of Lavrentiev regularization for solving ill-posed equations in a Hilbert space setting. The new convergence conditions are weaker than in earlier studies. Examples are presented to show that older convergence conditions are not satisfied but the new conditions are satisfied.

On the convergence of Newton's method under ω*-conditioned second derivative

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

Similarity:

We provide a new semilocal result for the quadratic convergence of Newton's method under ω*-conditioned second Fréchet derivative on a Banach space. This way we can handle equations where the usual Lipschitz-type conditions are not verifiable. An application involving nonlinear integral equations and two boundary value problems is provided. It turns out that a similar result using ω-conditioned hypotheses can provide usable error estimates indicating only linear convergence for Newton's...

Inexact Newton methods and recurrent functions

Ioannis K. Argyros, Saïd Hilout (2010)

Applicationes Mathematicae

Similarity:

We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore,...