Displaying similar documents to “Application of Mazur-Orlicz's theorem in AMISE calculation”

Asymptotic normality and efficiency of variance components estimators with high breakdown points

Christine H. Müller (2000)

Discussiones Mathematicae Probability and Statistics

Similarity:

For estimating the variance components of a one-way random effect model recently Uhlig (1995, 1997) and Lischer (1996) proposed non-iterative estimators with high breakdown points. These estimators base on the high breakdown point scale estimators of Rousseeuw and Croux (1992, 1993), which they called Q-estimators. In this paper the asymptotic normal distribution of the new variance components estimators is derived so that the asymptotic efficiency of these estimators can be compared...

Asymptotic normality and efficiency of two Sobol index estimators

Alexandre Janon, Thierry Klein, Agnès Lagnoux, Maëlle Nodet, Clémentine Prieur (2014)

ESAIM: Probability and Statistics

Similarity:

Many mathematical models involve input parameters, which are not precisely known. Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact on the variability of a quantity of interest (output of the model). One of the statistical tools used to quantify the influence of each input variable on the output is the Sobol sensitivity index. We consider the statistical estimation of this index from a finite sample of model outputs: we present two estimators...

An asymptotically unbiased moment estimator of a negative extreme value index

Frederico Caeiro, M. Ivette Gomes (2010)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper we consider a new class of consistent semi-parametric estimators of a negative extreme value index, based on the set of the k largest observations. This class of estimators depends on a control or tuning parameter, which enables us to have access to an estimator with a null second-order component of asymptotic bias, and with a rather interesting mean squared error, as a function of k. We study the consistency and asymptotic normality of the proposed estimators. Their finite...

On non-existence of moment estimators of the GED power parameter

Bartosz Stawiarski (2016)

Discussiones Mathematicae Probability and Statistics

Similarity:

We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove...

Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?

M. Ivette Gomes, Lígia Henriques-Rodrigues (2010)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this article, we begin with an asymptotic comparison at optimal levels of the so-called "maximum likelihood" (ML) extreme value index estimator, based on the excesses over a high random threshold, denoted PORT-ML, with PORT standing for peaks over random thresholds, with a similar ML estimator, denoted PORT-MP, with MP standing for modified-Pareto. The PORT-MP estimator is based on the same excesses, but with a trial of accommodation of bias on the Generalized Pareto model underlying...

Kernel estimators and the Dvoretzky-Kiefer-Wolfowitz inequality

Ryszard Zieliński (2007)

Applicationes Mathematicae

Similarity:

It turns out that for standard kernel estimators no inequality like that of Dvoretzky-Kiefer-Wolfowitz can be constructed, and as a result it is impossible to answer the question of how many observations are needed to guarantee a prescribed level of accuracy of the estimator. A remedy is to adapt the bandwidth to the sample at hand.