Displaying similar documents to “Existence result for nonlinear parabolic problems with L¹-data”

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed Aberqi, Jaouad Bennouna, M. Hammoumi, Mounir Mekkour, Ahmed Youssfi (2014)

Applicationes Mathematicae

Similarity:

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....

A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes

Dobeš, Jiří, Deconinck, Herman

Similarity:

A space-time formulation for unsteady inviscid compressible flow computations in 2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-Eulerian formulation (ALE) are discretized on two layers of space-time finite elements connecting levels n , n + 1 / 2 and n + 1 . The solution is approximated with linear variation in space (P1 triangle) combined with linear variation in time. The space-time residual from the lower layer of elements is distributed to the nodes at level...

The regularity of the positive part of functions in L 2 ( I ; H 1 ( Ω ) ) H 1 ( I ; H 1 ( Ω ) * ) with applications to parabolic equations

Daniel Wachsmuth (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u L 2 ( I ; H 1 ( Ω ) ) with t u L 2 ( I ; H 1 ( Ω ) * ) be given. Then we show by means of a counter-example that the positive part u + of u has less regularity, in particular it holds t u + L 1 ( I ; H 1 ( Ω ) * ) in general. Nevertheless, u + satisfies an integration-by-parts formula, which can be used to prove non-negativity of weak solutions of parabolic equations.

L p -decay of solutions to dissipative-dispersive perturbations of conservation laws

Grzegorz Karch (1997)

Annales Polonici Mathematici

Similarity:

We study the decay in time of the spatial L p -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.

Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems

Tayeb Benhamoud, Elmehdi Zaouche, Mahmoud Bousselsal (2024)

Mathematica Bohemica

Similarity:

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation u t - M ( Ω φ u d x ) div ( A ( x , t , u ) u ) = g ( x , t , u ) in Ω × ( 0 , T ) , where Ω is a bounded domain of n ( n 1 ) , T > 0 is a positive number, A ( x , t , u ) is an n × n matrix of variable coefficients depending on u and M : , φ : Ω , g : Ω × ( 0 , T ) × are given functions. We consider two different assumptions on g . The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if A ( x , t , u ) = a ( x , t ) depends only on...

Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux

Anne-Laure Dalibard (2011)

Journal of the European Mathematical Society

Similarity:

This article investigates the long-time behaviour of parabolic scalar conservation laws of the type t u + div y A ( y , u ) - Δ y u = 0 , where y N and the flux A is periodic in y . More specifically, we consider the case when the initial data is an L 1 disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in L 1 norm like a self-similar profile for large times. The proof uses a time and space change of variables...

On higher-order semilinear parabolic equations with measures as initial data

Victor Galaktionov (2004)

Journal of the European Mathematical Society

Similarity:

We consider 2 m th-order ( m 2 ) semilinear parabolic equations u t = ( Δ ) m u ± | u | p 1 u in N × + ( p > 1 ) , with Dirac’s mass δ ( x ) as the initial function. We show that for p < p 0 = 1 + 2 m / N , the Cauchy problem admits a solution u ( x , t ) which is bounded and smooth for small t > 0 , while for p p 0 such a local in time solution does not exist. This leads to a boundary layer phenomenon in constructing a proper solution via regular approximations.

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

Similarity:

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Space-time adaptive h p -FEM: Methodology overview

Šolín, Pavel, Segeth, Karel, Doležel, Ivo

Similarity:

We present a new class of self-adaptive higher-order finite element methods ( h p -FEM) which are free of analytical error estimates and thus work equally well for virtually all PDE problems ranging from simple linear elliptic equations to complex time-dependent nonlinear multiphysics coupled problems. The methods do not contain any tuning parameters and work reliably with both low- and high-order finite elements. The methodology was used to solve various types of problems including thermoelasticity,...

Vectorial quasilinear diffusion equation with dynamic boundary condition

Nakayashiki, Ryota

Similarity:

In this paper, we consider a class of initial-boundary value problems for quasilinear PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted by (S) ε with a nonnegative constant ε , and for any ε 0 , (S) ε can be regarded as a vectorial transmission system between the quasilinear equation in the spatial domain Ω , and the parabolic equation on the boundary Γ : = Ω , having a sufficient smoothness. The objective of this study is to establish a mathematical method,...