Displaying similar documents to “New variational principle and duality for an abstract semilinear Dirichlet problem”

Dirichlet problems without convexity assumption

Aleksandra Orpel (2005)

Annales Polonici Mathematici

Similarity:

We deal with the existence of solutions of the Dirichlet problem for sublinear and superlinear partial differential inclusions considered as generalizations of the Euler-Lagrange equation for a certain integral functional without convexity assumption. We develop a duality theory and variational principles for this problem. As a consequence of the duality theory we give a numerical version of the variational principles which enables approximation of the solution for our problem. ...

Non-trivial solutions for a two-point boundary value problem

G. A. Afrouzi, A. Hadjian, S. Heidarkhani (2013)

Annales Polonici Mathematici

Similarity:

We prove the existence of at least one non-trivial solution for Dirichlet quasilinear elliptic problems. The approach is based on variational methods.

Continuous dependence on function parameters for superlinear Dirichlet problems

Aleksandra Orpel (2005)

Colloquium Mathematicae

Similarity:

We discuss the existence of solutions for a certain generalization of the membrane equation and their continuous dependence on function parameters. We apply variational methods and consider the PDE as the Euler-Lagrange equation for a certain integral functional, which is not necessarily convex and coercive. As a consequence of the duality theory we obtain variational principles for our problem and some numerical results concerning approximation of solutions.

On the existence of multiple positive solutions for a certain class of elliptic problems

Aleksandra Orpel (2004)

Banach Center Publications

Similarity:

We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.

Existence and stability of solutions for semilinear Dirichlet problems

Marek Galewski (2006)

Annales Polonici Mathematici

Similarity:

We provide existence and stability results for semilinear Dirichlet problems with nonlinearities satisfying some general local growth conditions. We derive a general abstract result which we then apply to prove the existence of solutions, their stability and continuous dependence on parameters for a sixth order ODE with Dirichlet type boundary data.

A Remark on Variational Principles of Choban, Kenderov and Revalski

Adrian Królak (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We consider some variational principles in the spaces C*(X) of bounded continuous functions on metrizable spaces X, introduced by M. M. Choban, P. S. Kenderov and J. P. Revalski. In particular we give an answer (consistent with ZFC) to a question stated by these authors.

Growth of coefficients of universal Dirichlet series

A. Mouze (2007)

Annales Polonici Mathematici

Similarity:

We study universal Dirichlet series with respect to overconvergence, which are absolutely convergent in the right half of the complex plane. In particular we obtain estimates on the growth of their coefficients. We can then compare several classes of universal Dirichlet series.

Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

Gabriele Bonanno, Giovanni Molica Bisci, Vicenţiu Rădulescu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.