# Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

Gabriele Bonanno; Giovanni Molica Bisci; Vicenţiu Rădulescu

ESAIM: Control, Optimisation and Calculus of Variations (2012)

- Volume: 18, Issue: 4, page 941-953
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topBonanno, Gabriele, Bisci, Giovanni Molica, and Rădulescu, Vicenţiu. "Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket." ESAIM: Control, Optimisation and Calculus of Variations 18.4 (2012): 941-953. <http://eudml.org/doc/272940>.

@article{Bonanno2012,

abstract = {Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.},

author = {Bonanno, Gabriele, Bisci, Giovanni Molica, Rădulescu, Vicenţiu},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Sierpiński gasket; nonlinear elliptic equation; Dirichlet form; weak laplacian; weak Laplacian},

language = {eng},

number = {4},

pages = {941-953},

publisher = {EDP-Sciences},

title = {Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket},

url = {http://eudml.org/doc/272940},

volume = {18},

year = {2012},

}

TY - JOUR

AU - Bonanno, Gabriele

AU - Bisci, Giovanni Molica

AU - Rădulescu, Vicenţiu

TI - Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2012

PB - EDP-Sciences

VL - 18

IS - 4

SP - 941

EP - 953

AB - Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.

LA - eng

KW - Sierpiński gasket; nonlinear elliptic equation; Dirichlet form; weak laplacian; weak Laplacian

UR - http://eudml.org/doc/272940

ER -

## References

top- [1] S. Alexander, Some properties of the spectrum of the Sierpiński gasket in a magnetic field. Phys. Rev. B29 (1984) 5504–5508. MR743875
- [2] G. Bonanno and R. Livrea, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian. Nonlinear Anal.54 (2003) 1–7. Zbl1163.35367MR1978962
- [3] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl.2009 (2009) 1–20. Zbl1177.34038MR2487254
- [4] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the p-Laplacian. Proc. R. Soc. Edinb. Sect. A140 (2010) 737–752. Zbl1197.35125MR2672068
- [5] G. Bonanno, G. Molica Bisci and D. O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems. Math. Comput. Model.52 (2010) 152–160. Zbl1201.35102MR2645927
- [6] B.E. Breckner, D. Repovš and Cs. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket. Nonlinear Anal. 73 (2010) 2980–2990. Zbl1195.35121MR2678659
- [7] B.E. Breckner, V. Rădulescu and Cs. Varga, Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket. Analysis and Applications 9 (2011) 235–248. Zbl1229.35049
- [8] G. D’Aguì and G. Molica Bisci, Infinitely many solutions for perturbed hemivariational inequalities. Bound. Value Probl.2011 (2011) 1–19. Zbl1222.49011
- [9] G. D’Aguì and G. Molica Bisci, Existence results for an Elliptic Dirichlet problem, Le Matematiche LXVI, Fasc. I (2011) 133–141. Zbl1225.35072MR2827192
- [10] K.J. Falconer, Semilinear PDEs on self-similar fractals. Commun. Math. Phys.206 (1999) 235–245. Zbl0940.35080MR1736985
- [11] K.J. Falconer, Fractal Geometry : Mathematical Foundations and Applications, 2nd edition. John Wiley & Sons (2003). Zbl1285.28011MR3236784
- [12] K.J. Falconer and J. Hu, Nonlinear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl.240 (1999) 552–573. Zbl0942.35070MR1731662
- [13] M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket. Potential Anal.1 (1992) 1–35. Zbl1081.31501MR1245223
- [14] S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Math. Appl. 8, edited by H. Kesten. Springer, New York (1987) 121–129. Zbl0621.60073MR894545
- [15] J. Hu, Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket. Sci. China Ser. A47 (2004) 772–786. Zbl1124.35311
- [16] C. Hua and H. Zhenya, Semilinear elliptic equations on fractal sets. Acta Mathematica Scientica 29 B (2009) 232–242. Zbl1199.35380MR2517587
- [17] A. Kristály and G. Moroşanu, New competition phenomena in Dirichlet problems. J. Math. Pures Appl.94 (2010) 555–570. Zbl1206.35124
- [18] A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics : Qualitative Analysis of Nonlinear Equations and Unilateral Problems. Cambridge University Press, Cambridge (2010). Zbl1206.49002
- [19] J. Kigami, Analysis on Fractals. Cambridge University Press, Cambridge (2001). Zbl1143.28005MR1840042
- [20] S. Kusuoka, A diffusion process on a fractal. Probabilistic Methods in Mathematical Physics, Katata/Kyoto (1985) 251–274; Academic Press, Boston, MA (1987). Zbl0645.60081MR933827
- [21] B.B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967) 636–638.
- [22] B.B. Mandelbrot, Fractals : Form, Chance and Dimension. W.H. Freeman & Co., San Francisco (1977). Zbl0376.28020MR471493
- [23] B.B. Mandelbrot, The Fractal Geometry of Nature. W.H. Freeman & Co., San Francisco (1982). Zbl0504.28001MR665254
- [24] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. Comm. Partial Differential Equations21 (1996) 721–733. Zbl0856.35046MR1391521
- [25] P. Omari and F. Zanolin, An elliptic problem with arbitrarily small positive solutions, Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999). Electron. J. Differ. Equ. Conf. 5. Southwest Texas State Univ., San Marcos, TX (2000) 301–308. Zbl0959.35059MR1799060
- [26] R. Rammal, A spectrum of harmonic excitations on fractals. J. Phys. Lett.45 (1984) 191–206. MR737523
- [27] R. Rammal and G. Toulouse, Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44 (1983) L13–L22.
- [28] B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math.113 (2000) 401–410. Zbl0946.49001MR1735837
- [29] W. Sierpiński, Sur une courbe dont tout point est un point de ramification. Comptes Rendus (Paris) 160 (1915) 302–305. Zbl45.0628.02JFM45.0628.02
- [30] R.S. Strichartz, Analysis on fractals. Notices Amer. Math. Soc.46 (1999) 1199–1208. Zbl1194.58022MR1715511
- [31] R.S. Strichartz, Solvability for differential equations on fractals. J. Anal. Math.96 (2005) 247–267. Zbl1091.35001MR2177187
- [32] R.S. Strichartz, Differential Equations on Fractals, A Tutorial. Princeton University Press, Princeton, NJ (2006). Zbl1190.35001MR2246975

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.