Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket
Gabriele Bonanno; Giovanni Molica Bisci; Vicenţiu Rădulescu
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 4, page 941-953
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Alexander, Some properties of the spectrum of the Sierpiński gasket in a magnetic field. Phys. Rev. B29 (1984) 5504–5508. MR743875
- [2] G. Bonanno and R. Livrea, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian. Nonlinear Anal.54 (2003) 1–7. Zbl1163.35367MR1978962
- [3] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl.2009 (2009) 1–20. Zbl1177.34038MR2487254
- [4] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the p-Laplacian. Proc. R. Soc. Edinb. Sect. A140 (2010) 737–752. Zbl1197.35125MR2672068
- [5] G. Bonanno, G. Molica Bisci and D. O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems. Math. Comput. Model.52 (2010) 152–160. Zbl1201.35102MR2645927
- [6] B.E. Breckner, D. Repovš and Cs. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket. Nonlinear Anal. 73 (2010) 2980–2990. Zbl1195.35121MR2678659
- [7] B.E. Breckner, V. Rădulescu and Cs. Varga, Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket. Analysis and Applications 9 (2011) 235–248. Zbl1229.35049
- [8] G. D’Aguì and G. Molica Bisci, Infinitely many solutions for perturbed hemivariational inequalities. Bound. Value Probl.2011 (2011) 1–19. Zbl1222.49011
- [9] G. D’Aguì and G. Molica Bisci, Existence results for an Elliptic Dirichlet problem, Le Matematiche LXVI, Fasc. I (2011) 133–141. Zbl1225.35072MR2827192
- [10] K.J. Falconer, Semilinear PDEs on self-similar fractals. Commun. Math. Phys.206 (1999) 235–245. Zbl0940.35080MR1736985
- [11] K.J. Falconer, Fractal Geometry : Mathematical Foundations and Applications, 2nd edition. John Wiley & Sons (2003). Zbl1285.28011MR3236784
- [12] K.J. Falconer and J. Hu, Nonlinear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl.240 (1999) 552–573. Zbl0942.35070MR1731662
- [13] M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket. Potential Anal.1 (1992) 1–35. Zbl1081.31501MR1245223
- [14] S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Math. Appl. 8, edited by H. Kesten. Springer, New York (1987) 121–129. Zbl0621.60073MR894545
- [15] J. Hu, Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket. Sci. China Ser. A47 (2004) 772–786. Zbl1124.35311
- [16] C. Hua and H. Zhenya, Semilinear elliptic equations on fractal sets. Acta Mathematica Scientica 29 B (2009) 232–242. Zbl1199.35380MR2517587
- [17] A. Kristály and G. Moroşanu, New competition phenomena in Dirichlet problems. J. Math. Pures Appl.94 (2010) 555–570. Zbl1206.35124
- [18] A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics : Qualitative Analysis of Nonlinear Equations and Unilateral Problems. Cambridge University Press, Cambridge (2010). Zbl1206.49002
- [19] J. Kigami, Analysis on Fractals. Cambridge University Press, Cambridge (2001). Zbl1143.28005MR1840042
- [20] S. Kusuoka, A diffusion process on a fractal. Probabilistic Methods in Mathematical Physics, Katata/Kyoto (1985) 251–274; Academic Press, Boston, MA (1987). Zbl0645.60081MR933827
- [21] B.B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967) 636–638.
- [22] B.B. Mandelbrot, Fractals : Form, Chance and Dimension. W.H. Freeman & Co., San Francisco (1977). Zbl0376.28020MR471493
- [23] B.B. Mandelbrot, The Fractal Geometry of Nature. W.H. Freeman & Co., San Francisco (1982). Zbl0504.28001MR665254
- [24] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. Comm. Partial Differential Equations21 (1996) 721–733. Zbl0856.35046MR1391521
- [25] P. Omari and F. Zanolin, An elliptic problem with arbitrarily small positive solutions, Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999). Electron. J. Differ. Equ. Conf. 5. Southwest Texas State Univ., San Marcos, TX (2000) 301–308. Zbl0959.35059MR1799060
- [26] R. Rammal, A spectrum of harmonic excitations on fractals. J. Phys. Lett.45 (1984) 191–206. MR737523
- [27] R. Rammal and G. Toulouse, Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44 (1983) L13–L22.
- [28] B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math.113 (2000) 401–410. Zbl0946.49001MR1735837
- [29] W. Sierpiński, Sur une courbe dont tout point est un point de ramification. Comptes Rendus (Paris) 160 (1915) 302–305. Zbl45.0628.02JFM45.0628.02
- [30] R.S. Strichartz, Analysis on fractals. Notices Amer. Math. Soc.46 (1999) 1199–1208. Zbl1194.58022MR1715511
- [31] R.S. Strichartz, Solvability for differential equations on fractals. J. Anal. Math.96 (2005) 247–267. Zbl1091.35001MR2177187
- [32] R.S. Strichartz, Differential Equations on Fractals, A Tutorial. Princeton University Press, Princeton, NJ (2006). Zbl1190.35001MR2246975