Displaying similar documents to “Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces”

Periodic Solutions of Periodic Retarded Functional Differential Equations

Marcin Pawłowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The paper presents a geometric method of finding periodic solutions of retarded functional differential equations (RFDE) x ' ( t ) = f ( t , x t ) , where f is T-periodic in t. We construct a pair of subsets of ℝ × ℝⁿ called a T-periodic block and compute its Lefschetz number. If it is nonzero, then there exists a T-periodic solution.

Periodic solutions to a non-linear differential equation of the order 2 n + 1

Monika Kubicova (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.

Existence and uniqueness of positive periodic solutions for a class of integral equations with parameters

Shu-Gui Kang, Bao Shi, Sui Sun Cheng (2009)

Annales Polonici Mathematici

Similarity:

Existence of periodic solutions of functional differential equations with parameters such as Nicholson’s blowflies model call for the investigation of integral equations with parameters defined over spaces with periodic structures. In this paper, we study one such equation ϕ ( x ) = λ [ x , x + ω ] Ω K ( x , y ) h ( y ) f ( y , ϕ ( y - τ ( y ) ) ) d y , x ∈ Ω, by means of the proper value theory of operators in Banach spaces with cones. Existence, uniqueness and continuous dependence of proper solutions are established.

New results on stability of periodic solution for CNNs with proportional delays and D operator

Bo Du (2019)

Kybernetika

Similarity:

The problems related to periodic solutions of cellular neural networks (CNNs) involving D operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.

Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia

A. Halanay (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

Existence and stability of periodic solutions are studied for a system of delay differential equations with two delays, with periodic coefficients. It models the evolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenous leukemia under a periodic treatment that acts only on mature cells. Existence of a guiding function leads to the proof of the existence of a strictly positive periodic solution by a theorem...

Global exponential stability of positive periodic solutions for an epidemic model with saturated treatment

Bingwen Liu (2016)

Annales Polonici Mathematici

Similarity:

This paper is concerned with an SIR model with periodic incidence rate and saturated treatment function. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive periodic solutions for this model. The result obtained improves and supplements existing ones. We also use numerical simulations to illustrate our theoretical results.

Periodic solutions of evolution problem associated with moving convex sets

Charles Castaing, Manuel D.P. Monteiro Marques (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form - D u N C ( t ) ( u ( t ) ) + f ( t , u ( t ) ) where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, N C ( t ) ( u ( t ) ) is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions...

Periodic solutions of the Rayleigh equation with damping of definite sign

Pierpaolo Omari, Gabriele Villari (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The existence of a non-trivial periodic solution for the autonomous Rayleigh equation x ¨ + F x ˙ + g x = 0 is proved, assuming conditions which do not imply that F x x has a definite sign for x large. A similar result is obtained for the periodically forced equation x ¨ + F x ˙ + g x = e t .