Displaying similar documents to “On Borel Classes of Sets of Fréchet Subdifferentiability”

A Note on Differentiability of Lipschitz Maps

Rafał Górak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We show that every Lipschitz map defined on an open subset of the Banach space C(K), where K is a scattered compactum, with values in a Banach space with the Radon-Nikodym property, has a point of Fréchet differentiability. This is a strengthening of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on certain function spaces are Gâteaux differentiable.

Lipschitz-quotients and the Kunen-Martin Theorem

Yves Dutrieux (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets K and L such that C ( L ) is a Lipschitz-quotient of C ( K ) (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.

Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions

Luděk Zajíček (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on Γ -almost everywhere Fréchet differentiability of Lipschitz functions on c 0 (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at Γ -almost every x at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are Γ -almost everywhere Fréchet...

The topological complexity of sets of convex differentiable functions.

Mohammed Yahdi (1998)

Revista Matemática Complutense

Similarity:

Let C(X) be the set of all convex and continuous functions on a separable infinite dimensional Banach space X, equipped with the topology of uniform convergence on bounded subsets of X. We show that the subset of all convex Fréchet-differentiable functions on X, and the subset of all (not necessarily equivalent) Fréchet-differentiable norms on X, reduce every coanalytic set, in particular they are not Borel-sets.