Displaying similar documents to “Top-Dimensional Group of the Basic Intersection Cohomology for Singular Riemannian Foliations”

The BIC of a singular foliation defined by an abelian group of isometries

Martintxo Saralegi-Aranguren, Robert Wolak (2006)

Annales Polonici Mathematici

Similarity:

We study the cohomology properties of the singular foliation ℱ determined by an action Φ: G × M → M where the abelian Lie group G preserves a riemannian metric on the compact manifold M. More precisely, we prove that the basic intersection cohomology * p ̅ ( M / ) is finite-dimensional and satisfies the Poincaré duality. This duality includes two well known situations: ∙ Poincaré duality for basic cohomology (the action Φ is almost free). ∙ Poincaré duality for intersection cohomology (the group...

Localization of basic characteristic classes

Dirk Töben (2014)

Annales de l’institut Fourier

Similarity:

We introduce basic characteristic classes and numbers as new invariants for Riemannian foliations. If the ambient Riemannian manifold M is complete, simply connected (or more generally if the foliation is a transversely orientable Killing foliation) and if the space of leaf closures is compact, then the basic characteristic numbers are determined by the infinitesimal dynamical behavior of the foliation at the union of its closed leaves. In fact, they can be computed with an Atiyah-Bott-Berline-Vergne-type...

On riemannian foliations with minimal leaves

Jesús A. Alvarez Lopez (1990)

Annales de l'institut Fourier

Similarity:

For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is 2 , a simple characterization of this geometrical property is proved.

Double complexes and vanishing of Novikov cohomology

Hüttemann, Thomas (2011)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: Primary 18G35; Secondary 55U15. We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new...

Cutting description of trivial 1-cohomology

Andrzej Czarnecki (2014)

Annales Polonici Mathematici

Similarity:

A characterisation of trivial 1-cohomology, in terms of some connectedness condition, is presented for a broad class of metric spaces.