The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Tame Köthe Sequence Spaces are Quasi-Normable”

Some normability conditions on Fréchet spaces.

Tosun Terzioglu, Dietmar Vogt (1989)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

We define two new normability conditions on Fréchet spaces and announce some related results.

Some seminorms on quasi *-algebras

Camillo Trapani (2003)

Studia Mathematica

Similarity:

Different types of seminorms on a quasi *-algebra (𝔄,𝔄₀) are constructed from a suitable family ℱ of sesquilinear forms on 𝔄. Two particular classes, extended C*-seminorms and CQ*-seminorms, are studied in some detail. A necessary and sufficient condition for the admissibility of a sesquilinear form in terms of extended C*-seminorms on (𝔄,𝔄₀) is given.

The basic sequence problem

N. Kalton (1995)

Studia Mathematica

Similarity:

We construct a quasi-Banach space X which contains no basic sequence.

Operators whose adjoints are quasi p-nuclear

J. M. Delgado, C. Piñeiro, E. Serrano (2010)

Studia Mathematica

Similarity:

For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (xₙ) in X with K α x : ( α ) B p ' . We prove that an operator T: X → Y is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.

Bayoumi quasi-differential is not different from Fréchet-differential

Fernando Albiac, José Ansorena (2012)

Open Mathematics

Similarity:

Unlike for Banach spaces, the differentiability of functions between infinite-dimensional nonlocally convex spaces has not yet been properly studied or understood. In a paper published in this Journal in 2006, Bayoumi claimed to have discovered a new notion of derivative that was more suitable for all F-spaces including the locally convex ones with a wider potential in analysis and applied mathematics than the Fréchet derivative. The aim of this short note is to dispel this misconception,...

Bayoumi Quasi-Differential is different from Fréchet-Differential

Aboubakr Bayoumi (2006)

Open Mathematics

Similarity:

We prove that the Quasi Differential of Bayoumi of maps between locally bounded F-spaces may not be Fréchet-Differential and vice versa. So a new concept has been discovered with rich applications (see [1–6]). Our F-spaces here are not necessarily locally convex