Displaying similar documents to “Cegrell classes on compact Kähler manifolds”

On compact astheno-Kähler manifolds

Koji Matsuo, Takao Takahashi (2001)

Colloquium Mathematicae

Similarity:

We prove that every compact balanced astheno-Kähler manifold is Kähler, and that there exists an astheno-Kähler structure on the product of certain compact normal almost contact metric manifolds.

Compact lcK manifolds with parallel vector fields

Andrei Moroianu (2015)

Complex Manifolds

Similarity:

We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.

ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds

Le Mau Hai, Nguyen Van Khue, Pham Hoang Hiep (2007)

Annales Polonici Mathematici

Similarity:

We establish some results on ω-pluripolarity and complete ω-pluripolarity for sets in a compact Kähler manifold X with fundamental form ω. Moreover, we study subextension of ω-psh functions on a hyperconvex domain in X and prove a comparison principle for the class 𝓔(X,ω) recently introduced and investigated by Guedj-Zeriahi.

Strongly not relatives Kähler manifolds

Michela Zedda (2017)

Complex Manifolds

Similarity:

In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that...

Toric extremal Kähler-Ricci solitons are Kähler-Einstein

Simone Calamai, David Petrecca (2017)

Complex Manifolds

Similarity:

In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.

Three-manifolds and Kähler groups

D. Kotschick (2012)

Annales de l’institut Fourier

Similarity:

We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or 2 .