Displaying similar documents to “Multiple values and uniqueness problem for meromorphic mappings sharing hyperplanes”

Some further results on meromorphic functions that share two sets

Qi Han, Hong-Xun Yi (2008)

Annales Polonici Mathematici

Similarity:

This paper concerns the uniqueness of meromorphic functions and shows that there exists a set S ⊂ ℂ of eight elements such that any two nonconstant meromorphic functions f and g in the open complex plane ℂ satisfying E 3 ) ( S , f ) = E 3 ) ( S , g ) and Ē(∞,f) = Ē(∞,g) are identical, which improves a result of H. X. Yi. Also, some other related results are obtained, which generalize the results of G. Frank, E. Mues, M. Reinders, C. C. Yang, H. X. Yi, P. Li, M. L. Fang and H. Guo, and others.

Fixed points of meromorphic functions and of their differences and shifts

Zong-Xuan Chen (2013)

Annales Polonici Mathematici

Similarity:

Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that m a x τ ( f ( z ) ) , τ ( Δ c f ( z ) ) = m a x τ ( f ( z ) ) , τ ( f ( z + c ) ) = m a x τ ( Δ c f ( z ) ) , τ ( f ( z + c ) ) = σ ( f ( z ) ) , where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).

On the uniqueness problem for meromorphic mappings with truncated multiplicities

Feng Lü (2014)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is twofold. The first is to weaken or omit the condition d i m f - 1 ( H i H j ) m - 2 for i ≠ j in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number q of hyperplanes H j such that f(z) = g(z) on j = 1 q f - 1 ( H j ) , where f,g are meromorphic mappings.

Normality criteria and multiple values II

Yan Xu, Jianming Chang (2011)

Annales Polonici Mathematici

Similarity:

Let ℱ be a family of meromorphic functions defined in a domain D, let ψ (≢ 0, ∞) be a meromorphic function in D, and k be a positive integer. If, for every f ∈ ℱ and z ∈ D, (1) f≠ 0, f ( k ) 0 ; (2) all zeros of f ( k ) - ψ have multiplicities at least (k+2)/k; (3) all poles of ψ have multiplicities at most k, then ℱ is normal in D.

On unicity of meromorphic functions due to a result of Yang - Hua

Xiao-Tian Bai, Qi Han (2007)

Archivum Mathematicum

Similarity:

This paper studies the unicity of meromorphic(resp. entire) functions of the form f n f ' and obtains the following main result: Let f and g be two non-constant meromorphic (resp. entire) functions, and let a { 0 } be a non-zero finite value. Then, the condition that E 3 ) ( a , f n f ' ) = E 3 ) ( a , g n g ' ) implies that either f = d g for some ( n + 1 ) -th root of unity d , or f = c 1 e c z and g = c 2 e - c z for three non-zero constants c , c 1 and c 2 with ( c 1 c 2 ) n + 1 c 2 = - a 2 provided that n 11 (resp. n 6 ). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed. ...

Normality criteria for families of zero-free meromorphic functions

Jun-Fan Chen (2015)

Annales Polonici Mathematici

Similarity:

Let ℱ be a family of zero-free meromorphic functions in a domain D, let n, k and m be positive integers with n ≥ m+1, and let a ≠ 0 and b be finite complex numbers. If for each f ∈ ℱ, f m + a ( f ( k ) ) - b has at most nk zeros in D, ignoring multiplicities, then ℱ is normal in D. The examples show that the result is sharp.

Unicity of meromorphic mappings sharing few hyperplanes

Si Duc Quang (2011)

Annales Polonici Mathematici

Similarity:

We prove some theorems on uniqueness of meromorphic mappings into complex projective space ℙⁿ(ℂ), which share 2n+3 or 2n+2 hyperplanes with truncated multiplicities.

Distribution of zeros and shared values of difference operators

Jilong Zhang, Zongsheng Gao, Sheng Li (2011)

Annales Polonici Mathematici

Similarity:

We investigate the distribution of zeros and shared values of the difference operator on meromorphic functions. In particular, we show that if f is a transcendental meromorphic function of finite order with a small number of poles, c is a non-zero complex constant such that Δ c k f 0 for n ≥ 2, and a is a small function with respect to f, then f Δ c k f equals a (≠ 0,∞) at infinitely many points. Uniqueness of difference polynomials with the same 1-points or fixed points is also proved.

Generalizations on the results of Cao and Zhang

Sujoy Majumder, Rajib Mandal (2022)

Mathematica Bohemica

Similarity:

We establish some uniqueness results for meromorphic functions when two nonlinear differential polynomials P ( f ) i = 1 k ( f ( i ) ) n i and P ( g ) i = 1 k ( g ( i ) ) n i share a nonzero polynomial with certain degree and our results improve and generalize some recent results in Y.-H. Cao, X.-B. Zhang (2012). Also we exhibit two examples to show that the conditions used in the results are sharp.

On unique range sets of meromorphic functions in m

Xiao-Tian Bai, Qi Han (2007)

Archivum Mathematicum

Similarity:

By considering a question proposed by F. Gross concerning unique range sets of entire functions in , we study the unicity of meromorphic functions in m that share three distinct finite sets CM and obtain some results which reduce 5 c 3 ( ( m ) ) 9 to 5 c 3 ( ( m ) ) 6 .