Displaying similar documents to “Real hypersurfaces with a special transversal vector field”

Real hypersurfaces with parallel induced almost contact structures

Zuzanna Szancer (2012)

Annales Polonici Mathematici

Similarity:

Real affine hypersurfaces of the complex space n + 1 with a J-tangent transversal vector field and an induced almost contact structure (φ,ξ,η) are studied. Some properties of hypersurfaces with φ or η parallel relative to an induced connection are proved. Also a local characterization of these hypersurfaces is given.

Real hypersurfaces with an induced almost contact structure

Michał Szancer, Zuzanna Szancer (2009)

Colloquium Mathematicae

Similarity:

We study real affine hypersurfaces f : M n + 1 with an almost contact structure (φ,ξ,η) induced by any J-tangent transversal vector field. The main purpose of this paper is to show that if (φ,ξ,η) is metric relative to the second fundamental form then it is Sasakian and moreover f(M) is a piece of a hyperquadric in 2 n + 2 .

A local characterization of affine holomorphic immersions with an anti-complex and ∇-parallel shape operator

Maria Robaszewska (2002)

Annales Polonici Mathematici

Similarity:

We study the complex hypersurfaces f : M ( n ) n + 1 which together with their transversal bundles have the property that around any point of M there exists a local section of the transversal bundle inducing a ∇-parallel anti-complex shape operator S. We give a class of examples of such hypersurfaces with an arbitrary rank of S from 1 to [n/2] and show that every such hypersurface with positive type number and S ≠ 0 is locally of this kind, modulo an affine isomorphism of n + 1 .

On some properties of induced almost contact structures

Zuzanna Szancer (2015)

Annales Polonici Mathematici

Similarity:

Real affine hypersurfaces of the complex space n + 1 with a J-tangent transversal vector field and an induced almost contact structure (φ,ξ,η) are studied. Some properties of the induced almost contact structures are proved. In particular, we prove some properties of the induced structure when the distribution is involutive. Some constraints on a shape operator when the induced almost contact structure is either normal or ξ-invariant are also given.

Hypersurfaces with almost complex structures in the real affine space

Mayuko Kon (2007)

Colloquium Mathematicae

Similarity:

We study affine hypersurface immersions f : M 2 n + 1 , where M is an almost complex n-dimensional manifold. The main purpose is to give a condition for (M,J) to be a special Kähler manifold with respect to the Levi-Civita connection of an affine fundamental form.

A certain tensor on real hypersurfaces in a nonflat complex space form

Kazuhiro Okumura (2020)

Czechoslovak Mathematical Journal

Similarity:

In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure ( φ , ξ , η , g ) induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field h ( = 1 2 ξ φ ) plays an important role in contact Riemannian geometry. In this...

Spacelike intersection curve of three spacelike hypersurfaces in E 1 4

B. Uyar Duldul, M. Caliskan (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E 1 4 .

Weingarten hypersurfaces of the spherical type in Euclidean spaces

Cid D. F. Machado, Carlos M. C. Riveros (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We generalize a parametrization obtained by A. V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces M n , n 2 , in Euclidean space satisfying a relation r = 1 n ( - 1 ) r + 1 r f r - 1 n r H r = 0 , where H r is the r th mean curvature and f C ( M n ; ) , these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms...

A Remark on a Paper of Crachiola and Makar-Limanov

Robert Dryło (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line ¹ k , then ML(X×Y) = k[X]⊗ ML(Y) for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.

A characterization of totally η -umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form

Mayuko Kon (2008)

Czechoslovak Mathematical Journal

Similarity:

We give a characterization of totally η -umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator A of a real hypersurface M of a complex space form M n ( c ) , c 0 , n 3 , satisfies g ( A X , Y ) = a g ( X , Y ) for any X , Y T 0 ( x ) , a being a function, where T 0 is the holomorphic distribution on M , then M is a totally η -umbilical real hypersurface or locally congruent to a ruled real...

Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians

Eunmi Pak, Juan de Dios Pérez, Young Jin Suh (2015)

Czechoslovak Mathematical Journal

Similarity:

We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian G 2 ( m + 2 ) . In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in G 2 ( m + 2 ) satisfying such conditions.