Displaying similar documents to “A Note on Indestructibility and Strong Compactness”

Supercompactness and partial level by level equivalence between strong compactness and strongness

Arthur W. Apter (2004)

Fundamenta Mathematicae

Similarity:

We force and construct a model containing supercompact cardinals in which, for any measurable cardinal δ and any ordinal α below the least beth fixed point above δ, if δ + α is regular, δ is δ + α strongly compact iff δ is δ + α + 1 strong, except possibly if δ is a limit of cardinals γ which are δ + α strongly compact. The choice of the least beth fixed point above δ as our bound on α is arbitrary, and other bounds are possible.

Supercompactness and failures of GCH

Sy-David Friedman, Radek Honzik (2012)

Fundamenta Mathematicae

Similarity:

Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s...

L-like Combinatorial Principles and Level by Level Equivalence

Arthur W. Apter (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We force and construct a model in which GCH and level by level equivalence between strong compactness and supercompactness hold, along with certain additional “L-like” combinatorial principles. In particular, this model satisfies the following properties: (1) δ holds for every successor and Mahlo cardinal δ. (2) There is a stationary subset S of the least supercompact cardinal κ₀ such that for every δ ∈ S, δ holds and δ carries a gap 1 morass. (3) A weak version of δ holds for every...

The tree property at the double successor of a measurable cardinal κ with 2 κ large

Sy-David Friedman, Ajdin Halilović (2013)

Fundamenta Mathematicae

Similarity:

Assuming the existence of a λ⁺-hypermeasurable cardinal κ, where λ is the first weakly compact cardinal above κ, we prove that, in some forcing extension, κ is still measurable, κ⁺⁺ has the tree property and 2 κ = κ . If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal θ > λ of cofinality greater than κ) then the proof can be generalized to get 2 κ = θ .

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

A partition property of cardinal numbers

N. H. Williams

Similarity:

CONTENTSIntroduction....................................................................................... 5§ 1. Notation and definitions......................................................... 5§ 2. Negative relations.................................................................... 9§ 3. The Ramification Lemma ..................................................... 10§ 4. The main theorem................................................................... 13§ 5. A result for cardinals...

On equivalence relations second order definable over H(κ)

Saharon Shelah, Pauli Vaisanen (2002)

Fundamenta Mathematicae

Similarity:

Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 second order definable over H(κ) if there exists a second order sentence ϕ and a parameter P ⊆ H(κ) such that functions f and g from κ into 2 are equivalent iff the structure ⟨ H(κ), ∈, P, f, g ⟩ satisfies ϕ. The possible numbers of equivalence classes of second order definable equivalence relations include all the nonzero cardinals at most κ⁺. Additionally, the possibilities are closed...

How many normal measures can ω + 1 carry?

Arthur W. Apter (2006)

Fundamenta Mathematicae

Similarity:

We show that assuming the consistency of a supercompact cardinal with a measurable cardinal above it, it is possible for ω + 1 to be measurable and to carry exactly τ normal measures, where τ ω + 2 is any regular cardinal. This contrasts with the fact that assuming AD + DC, ω + 1 is measurable and carries exactly three normal measures. Our proof uses the methods of [6], along with a folklore technique and a new method due to James Cummings.

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...

Interpolation of κ -compactness and PCF

István Juhász, Zoltán Szentmiklóssy (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let Φ ( μ , κ , λ ) denote the following statement: μ < κ < λ = cf ( λ ) and there is { S ξ : ξ < λ } [ κ ] μ such that | { ξ : | S ξ A | = μ } | < λ whenever A [ κ ] < κ . We show that if Φ ( μ , κ , λ ) holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce Φ ( cf ( κ ) , κ , κ + ) for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and ω -compact space is uncountably compact, that is κ -compact for all uncountable cardinals...

Superstability in simple finitary AECs

Tapani Hyttinen, Meeri Kesälä (2007)

Fundamenta Mathematicae

Similarity:

We continue the study of finitary abstract elementary classes beyond ℵ₀-stability. We suggest a possible notion of superstability for simple finitary AECs, and derive from this notion several good properties for independence. We also study constructible models and the behaviour of Galois types and weak Lascar strong types in this context. We show that superstability is implied by a-categoricity in a suitable cardinal. As an application we prove the following theorem: Assume that ( , ) is...

Embedding orders into the cardinals with D C κ

Asaf Karagila (2014)

Fundamenta Mathematicae

Similarity:

Jech proved that every partially ordered set can be embedded into the cardinals of some model of ZF. We extend this result to show that every partially ordered set can be embedded into the cardinals of some model of Z F + D C < κ for any regular κ. We use this theorem to show that for all κ, the assumption of D C κ does not entail that there are no decreasing chains of cardinals. We also show how to extend the result to and embed into the cardinals a proper class which is definable over the ground model....

Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns

Arthur W. Apter (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We provide upper and lower bounds in consistency strength for the theories “ZF + ¬ A C ω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular of cofinality ω” and “ZF + ¬ A C ω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal...