Displaying similar documents to “Weighted Estimates for the Maximal Operator of a Multilinear Singular Integral”

Weighted inequalities for commutators of one-sided singular integrals

María Lorente, María Silvina Riveros (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calder’on-Zygmund kernel with support in ( - , 0 ) ) with BMO functions. We give the one-sided version of the results in C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756 and C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., vol 128 (1),...

One-weight weak type estimates for fractional and singular integrals in grand Lebesgue spaces

Vakhtang Kokilashvili, Alexander Meskhi (2014)

Banach Center Publications

Similarity:

We investigate weak type estimates for maximal functions, fractional and singular integrals in grand Lebesgue spaces. In particular, we show that for the one-weight weak type inequality it is necessary and sufficient that a weight function belongs to the appropriate Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and singular integrals with product kernels.

Two weighted inequalities for convolution maximal operators.

Ana Lucía Bernardis, Francisco Javier Martín-Reyes (2002)

Publicacions Matemàtiques

Similarity:

Let φ: R → [0,∞) an integrable function such that φχ = 0 and φ is decreasing in (0,∞). Let τf(x) = f(x-h), with h ∈ R {0} and f(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mf(x) = sup|f| * [τφ](x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.

A remark on Fefferman-Stein's inequalities.

Y. Rakotondratsimba (1998)

Collectanea Mathematica

Similarity:

It is proved that, for some reverse doubling weight functions, the related operator which appears in the Fefferman Stein's inequality can be taken smaller than those operators for which such an inequality is known to be true.