Displaying similar documents to “On the existence and regularity of the solutions to the incompressible Navier-Stokes equations in presence of mass diffusion”

Self-improving bounds for the Navier-Stokes equations

Jean-Yves Chemin, Fabrice Planchon (2012)

Bulletin de la Société Mathématique de France

Similarity:

We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to - 1 . Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig, Hermann Sohr (2009)

Czechoslovak Mathematical Journal

Similarity:

For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of...

Long-time behavior for 2D non-autonomous g-Navier-Stokes equations

Cung The Anh, Dao Trong Quyet (2012)

Annales Polonici Mathematici

Similarity:

We study the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback σ -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force...

Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity

Alexis Vasseur (2009)

Applications of Mathematics

Similarity:

In this short note we give a link between the regularity of the solution u to the 3D Navier-Stokes equation and the behavior of the direction of the velocity u / | u | . It is shown that the control of Div ( u / | u | ) in a suitable L t p ( L x q ) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based...

On the Stokes and Navier-Stokes flows in a perturbed half-space

Takayuki Kubo, Yoshihiro Shibata (2005)

Banach Center Publications

Similarity:

We give the L p - L q estimate for the Stokes semigroup in a perturbed half-space and some global in time existence theorems for small solutions to the Navier-Stokes equation.

On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem

Hugo Beirão da Veiga (2009)

Journal of the European Mathematical Society

Similarity:

We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case p 2 . Actually, we are interested in proving regularity results in L q ( Ω ) spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous...

Remark on regularity of weak solutions to the Navier-Stokes equations

Zdeněk Skalák, Petr Kučera (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space L 2 ( 0 , T , W 1 , 3 ( 𝛺 ) 3 ) are regular.

Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain

Thierry Gallay (2012)

Journées Équations aux dérivées partielles

Similarity:

We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as t . This result was...

Time-dependent coupling of Navier–Stokes and Darcy flows

Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.

Maximal regularity and viscous incompressible flows with free interface

Senjo Shimizu (2008)

Banach Center Publications

Similarity:

We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time L p - L q maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.