Displaying similar documents to “Existence of solutions for a model of self-gravitating particles with external potential”

The Cauchy problem and self-similar solutions for a nonlinear parabolic equation

Piotr Biler (1995)

Studia Mathematica

Similarity:

The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.

Growth and accretion of mass in an astrophysical model, II

Piotr Biler, Tadeusz Nadzieja (1995)

Applicationes Mathematicae

Similarity:

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

On some parabolic-elliptic system with self-similar pressure term

Robert Stańczy (2006)

Banach Center Publications

Similarity:

A priori estimates for solutions of a system describing the interaction of gravitationally attracting particles with a self-similar pressure term are proved. The presented theory covers the case of the model with diffusions that obey either Fermi-Dirac statistics or a polytropic one.

Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source

Ji Liu, Jia-Shan Zheng (2015)

Czechoslovak Mathematical Journal

Similarity:

We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of...

Existence of explosive solutions to some nonlinear parabolic Itô equations

Pao-Liu Chow (2015)

Banach Center Publications

Similarity:

The paper is concerned with the problem of existence of explosive solutions for a class of nonlinear parabolic Itô equations. Under some sufficient conditions on the initial state and the coefficients, it is proven by the method of auxiliary functionals that there exist explosive solutions with positive probability. The main results are presented in Theorems 3.1 and 3.2 under different sets of conditions. An example is given to illustrate some application of the second theorem. ...

Nonisothermal systems of self-attracting Fermi-Dirac particles

Piotr Biler, Tadeusz Nadzieja, Robert Stańczy (2004)

Banach Center Publications

Similarity:

The existence of stationary solutions and blow up of solutions for a system describing the interaction of gravitationally attracting particles that obey the Fermi-Dirac statistics are studied.

Blow-up versus global existence of solutions to aggregation equations

Grzegorz Karch, Kanako Suzuki (2011)

Applicationes Mathematicae

Similarity:

A class of nonlinear viscous transport equations describing aggregation phenomena in biology is considered. General conditions on an interaction potential are obtained which lead either to the existence or to the nonexistence of global-in-time solutions.

On the unique solvability of a nonlocal phase separation problem for multicomponent systems

Jens A. Griepentrog (2004)

Banach Center Publications

Similarity:

A nonlocal model of phase separation in multicomponent systems is presented. It is derived from conservation principles and minimization of free energy containing a nonlocal part due to particle interaction. In contrast to the classical Cahn-Hilliard theory with higher order terms this leads to an evolution system of second order parabolic equations for the particle densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction...

On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

Piotr Biler, Lorenzo Brandolese (2009)

Studia Mathematica

Similarity:

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

Similarity:

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

A model of evolution of temperature and density of ions in an electrolyte

Andrzej Raczyński (2005)

Applicationes Mathematicae

Similarity:

We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.