The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
Studia Mathematica (1995)
- Volume: 114, Issue: 2, page 181-205
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBiler, Piotr. "The Cauchy problem and self-similar solutions for a nonlinear parabolic equation." Studia Mathematica 114.2 (1995): 181-205. <http://eudml.org/doc/216187>.
@article{Biler1995,
abstract = {The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.},
author = {Biler, Piotr},
journal = {Studia Mathematica},
keywords = {nonlinear parabolic-elliptic system; Cauchy problem; self-similar solutions; gravitational equilibrium of polytropic stars},
language = {eng},
number = {2},
pages = {181-205},
title = {The Cauchy problem and self-similar solutions for a nonlinear parabolic equation},
url = {http://eudml.org/doc/216187},
volume = {114},
year = {1995},
}
TY - JOUR
AU - Biler, Piotr
TI - The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
JO - Studia Mathematica
PY - 1995
VL - 114
IS - 2
SP - 181
EP - 205
AB - The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.
LA - eng
KW - nonlinear parabolic-elliptic system; Cauchy problem; self-similar solutions; gravitational equilibrium of polytropic stars
UR - http://eudml.org/doc/216187
ER -
References
top- [1] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal. 18 (1984), 111-149. Zbl0582.35060
- [2] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212. Zbl0599.35073
- [3] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539 (erratum: ibid. 112 (1993), 447).
- [4] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-239. Zbl0836.35076
- [5] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, ibid. 67 (1994), 297-308. Zbl0832.35015
- [6] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. Zbl0817.35041
- [7] G. Bourdaud, Réalisations des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54. Zbl0661.46026
- [8] M. Cannone, Ondelettes, paraproduits et Navier-Stokes, thèse de doctorat de l'Université Paris-IX, juin 1994.
- [9] M. Cannone et Y. Meyer, Existence et unicité globale pour les équations de Navier-Stokes dans , prépublication, CEREMADE, Université Paris-Dauphine, 1994.
- [10] M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, exposé VIII, Séminaire "Équations aux dérivées partielles", Centre de Mathématiques, École Polytechnique, 18 janvier 1994.
- [11] M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires de l'équation de Navier-Stokes, prépublication, CEREMADE, Université Paris-Dauphine, 1994.
- [12] P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248. Zbl0795.35080
- [13] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991. Zbl0757.42006
- [14] Y. Giga and T. Miyakawa, Navier-Stokes flow in with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618. Zbl0681.35072
- [15] J. Ginibre and G. Velo, Scattering in the energy space for a class of nonlinear wave equations, Comm. Math. Phys. 123 (1989), 535-573. Zbl0698.35112
- [16] T. Kato, Strong solutions of the Navier-Stokes equations in , with applications to weak solutions, Math. Z. 187 (1984), 471-480. Zbl0545.35073
- [17] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), 127-155. Zbl0781.35052
- [18] T. Kobayashi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Methods Appl. Sci. 15 (1992), 599-620. Zbl0771.35046
- [19] H. Kozono and M. Yamazaki, Semilinear heat equation and the Navier-Stokes equation with distributions as initial data, C. R. Acad. Sci. Paris 317 (1993), 1127-1132. Zbl0793.35070
- [20] P.-G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (4) (1985), 175-187. Zbl0555.47032
- [21] T. Miyakawa, On Morrey spaces of measures: basic properties and potential estimates, Hiroshima Math. J. 20 (1990), 213-222. Zbl0728.31007
- [22] M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407-1456. Zbl0771.35047
- [23] H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, 1983.
- [24] H. Triebel, Theory of Function Spaces II, Monographs Math. 84, Birkhäuser, 1992.
- [25] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J. 29 (1980), 79-102. Zbl0443.35034
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.