The Cauchy problem and self-similar solutions for a nonlinear parabolic equation

Piotr Biler

Studia Mathematica (1995)

  • Volume: 114, Issue: 2, page 181-205
  • ISSN: 0039-3223

Abstract

top
The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.

How to cite

top

Biler, Piotr. "The Cauchy problem and self-similar solutions for a nonlinear parabolic equation." Studia Mathematica 114.2 (1995): 181-205. <http://eudml.org/doc/216187>.

@article{Biler1995,
abstract = {The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.},
author = {Biler, Piotr},
journal = {Studia Mathematica},
keywords = {nonlinear parabolic-elliptic system; Cauchy problem; self-similar solutions; gravitational equilibrium of polytropic stars},
language = {eng},
number = {2},
pages = {181-205},
title = {The Cauchy problem and self-similar solutions for a nonlinear parabolic equation},
url = {http://eudml.org/doc/216187},
volume = {114},
year = {1995},
}

TY - JOUR
AU - Biler, Piotr
TI - The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
JO - Studia Mathematica
PY - 1995
VL - 114
IS - 2
SP - 181
EP - 205
AB - The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.
LA - eng
KW - nonlinear parabolic-elliptic system; Cauchy problem; self-similar solutions; gravitational equilibrium of polytropic stars
UR - http://eudml.org/doc/216187
ER -

References

top
  1. [1] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal. 18 (1984), 111-149. Zbl0582.35060
  2. [2] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212. Zbl0599.35073
  3. [3] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539 (erratum: ibid. 112 (1993), 447). 
  4. [4] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-239. Zbl0836.35076
  5. [5] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, ibid. 67 (1994), 297-308. Zbl0832.35015
  6. [6] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. Zbl0817.35041
  7. [7] G. Bourdaud, Réalisations des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54. Zbl0661.46026
  8. [8] M. Cannone, Ondelettes, paraproduits et Navier-Stokes, thèse de doctorat de l'Université Paris-IX, juin 1994. 
  9. [9] M. Cannone et Y. Meyer, Existence et unicité globale pour les équations de Navier-Stokes dans 3 , prépublication, CEREMADE, Université Paris-Dauphine, 1994. 
  10. [10] M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, exposé VIII, Séminaire "Équations aux dérivées partielles", Centre de Mathématiques, École Polytechnique, 18 janvier 1994. 
  11. [11] M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires de l'équation de Navier-Stokes, prépublication, CEREMADE, Université Paris-Dauphine, 1994. 
  12. [12] P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248. Zbl0795.35080
  13. [13] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991. Zbl0757.42006
  14. [14] Y. Giga and T. Miyakawa, Navier-Stokes flow in 3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618. Zbl0681.35072
  15. [15] J. Ginibre and G. Velo, Scattering in the energy space for a class of nonlinear wave equations, Comm. Math. Phys. 123 (1989), 535-573. Zbl0698.35112
  16. [16] T. Kato, Strong L p solutions of the Navier-Stokes equations in m , with applications to weak solutions, Math. Z. 187 (1984), 471-480. Zbl0545.35073
  17. [17] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), 127-155. Zbl0781.35052
  18. [18] T. Kobayashi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Methods Appl. Sci. 15 (1992), 599-620. Zbl0771.35046
  19. [19] H. Kozono and M. Yamazaki, Semilinear heat equation and the Navier-Stokes equation with distributions as initial data, C. R. Acad. Sci. Paris 317 (1993), 1127-1132. Zbl0793.35070
  20. [20] P.-G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (4) (1985), 175-187. Zbl0555.47032
  21. [21] T. Miyakawa, On Morrey spaces of measures: basic properties and potential estimates, Hiroshima Math. J. 20 (1990), 213-222. Zbl0728.31007
  22. [22] M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407-1456. Zbl0771.35047
  23. [23] H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, 1983. 
  24. [24] H. Triebel, Theory of Function Spaces II, Monographs Math. 84, Birkhäuser, 1992. 
  25. [25] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in L p , Indiana Univ. Math. J. 29 (1980), 79-102. Zbl0443.35034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.